

September 16, 2022

Mississippi Department of Environmental Quality Office of Pollution Control Environmental Permits Division 515 E. Amite Street Jackson, MS 39201

RE: Notice of Intent for Coverage Under the Oil Production General Permit Kaiser-Francis Oil Company Gilliland 34-1H Al No.: 74992; Permit No.: 1840-00092 Monroe County, MS

In accordance with MAC Title 11, Part 2, submitted with this are two (2) bound sets of the referenced material. An electronic copy has also been submitted through the EPD Electronic Application Submittal webpage. Request is hereby made for coverage under the Oil Production General Permit (OPGP). It should be noted this facility is existing and was previously owned/operated by Metano Energy III LP which operated under Air Construction Permit No.: 1840-00092.

The facility functions as an oil & gas production site and operates controls such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit. Details of the operations, emission estimates, and associated emission programs are included herein and verify that the facility should be classified as a synthetic minor source under the State and Federal air permitting programs. All measures should be taken in the review process to assure that the minor classification is federally recognized.

A copy of the public notice is enclosed and will be published in the Northeast Mississippi Daily Journal. Additionally, a copy of the public notice and the complete OPGP NOI will be provided to the Hamilton Public Library. The public notice, notarized proof of publication, and library proof of receipt will be submitted to MDEQ when available.

If any other information is required regarding these matters, please do not hesitate to contact HLP Engineering, Inc. at (337) 839-1075. All written correspondence should be directed to: Kaiser-Francis Oil Company, P.O. Box 21468, Tulsa, OK 74121-1468, Attn.: Brittany Wilkinson. Thank you in advance for your assistance with this matter.

Sincerely, **HLP ENGINEERING, INC** [am/i

Enclosures

XC:

Brittany Wilkinson - KFOC

Oil Production General Permit Public Notice Mississippi Environmental Quality Permit Board P. O. Box 2261 Jackson, Mississippi 39225 Telephone No. (601) 961-5171

Public Notice Start Date: TBD

Kaiser-Francis Oil Company Gilliland 34-1H located *at 33 42 52.50, -88 24 17.35* in *Hamilton, Monroe County,* Mississippi, *918-491-4439,* has applied to the Mississippi Department of Environmental Quality (MDEQ) for coverage and/or modification under MDEQ's Oil Production General Permit to construct and operate an oil production facility.

The Oil Production General Permit has been developed to ensure compliance with all State and Federal regulations. Facilities granted coverage under this permit and adhering to the conditions contained therein should operate within State and Federal environmental laws and standards concerning the operation of air emissions equipment.

The proposed project consists of construction and/or operation of *an oil and gas production facility including 1 oil well, 1 separator, 1 heater treater, 3 oil storage tanks, 1 water storage tank, 1 gasoline-fired tank bottoms pump engine, 1 control flare, and other ancillary activities associated with oil & gas production.* The facility will operate control(s) such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit. This project will result in new sources of potential emissions of regulated air pollutants. However, emissions will be below the Prevention of Significant Deterioration significance levels as specified in the Mississippi Regulations for the Prevention of Significant Deterioration of Air Quality, 11 Miss. Admin. Code Pt. 2, Ch. 5., and in 40 CFR Part 52.21. Potential emissions will also be below the Air Title V Major Source thresholds as specified in 11 Miss. Admin. Code Pt. 2, Ch. 6. and in 40 CFR Part 70.

Persons wishing to comment upon or object to the proposed request are invited to submit comments in writing to the **Air 1 Branch Chief, Environmental Permits Division** at the Permit Board's address shown above no later than 30-days from the date of publication of this notice. All comments received or postmarked by this date will be considered in the determination regarding the coverage approval. After receipt of public comments and thorough consideration of all comments, MDEQ will formulate its recommendations regarding coverage approval.

Additional details about the proposed project are available by writing or calling the **Air 1 Branch Chief, Environmental Permits Division** at the above Permit Board address and telephone number and on the MDEQ's website at: <u>https://www.mdeq.ms.gov/ensearch/recently-received-general-permit-noi/</u>. This information is also available for review at the following location during normal business hours:

Mississippi Department of Environmental Quality Office of Pollution Control 515 East Amite Street, Jackson, MS 39201 (601) 961-5171

Please bring the foregoing to the attention of persons whom you know will be interested.

Notice of Intent for Oil Production General Permit

Kaiser-Francis Oil Company

Gilliland 34-1H Monroe County, MS AI No.: 74992

September 2022

Table of Contents

Section 1

Facility Information	Section A
Facility Location Map(s)	
Simplified Process Flow Diagram & Process Description	
Facility-Wide Emissions Information	Section 1
Maximum Uncontrolled Emissions	B.1
Proposed Allowable Emissions	B.2
Proposed Allowable Hazardous Air Pollutants (HAPs)	B.3
Greenhouse Gas Emissions	B.4
Stack Parameters and Exit Conditions	B.5
Emission Point Source List	B.6

Section 2

Emission Point Data:	
Fuel Burning Equipment – External Combustion Sources	Section C
Fuel Burning Equipment – Internal Combustion Engines	Section D
Tank Summary	Section E
Flare	Section F
Compliance Plan	Section G

Section 3

Emission Calculations

Section 4

Mississippi Secretary of State Certificate of Good Standing Supporting Documents

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE Facility (Agency Interest) Information Section OPGP - A 1. Name, Address, and Location of Facility A. Owner/Company Name: Kaiser-Francis Oil Company B. Facility Name (*if different than A. above*): Gilliland 34-1H C. Facility Air Permit/Coverage No. (*if known*): 1840-00092 D. Agency Interest No. (*if known*): 74992 E. Physical Address 1. Street Address: 1. Street Address: The facility is located approximately 2.0 miles southeast of Hamilton, MS. 2. Citra Active Parentition

E. Physical Address	
	y 2.0 miles southeast of Hamilton, MS.
2. City: Hamilton	3. State: MS
4. County: Monroe	5. Zip Code: <u>39746</u>
6. Telephone No.: 918-491-4439	7. Fax No.:
8. Are facility records kept at this location? \Box Yes	No. Please complete Item 10
F. Mailing Address	
1. Street Address or P.O. Box: P.O. Box 21468	
2. City: Tulsa	3. State: OK
4. Zip Code: 74121-1468	
G. Latitude/Longitude Data	
1. Collection Point (<i>check one</i>):	
$\Box \text{ Site Entrance} \qquad \forall \text{ Other:}$	Well Surface Location
2. Method of Collection (<i>check one</i>):	Wen Surface Escation
GPS Specify coordinate system (NAL	$\mathbf{)}$ 83 etc.)
\square Map Interpolation (Google Earth, etc.)	\Box Other:
3. Latitude (<i>degrees/minutes/seconds</i>) : 33 42 52	
4. Longitude (degrees/minutes/seconds): 88 24 17	
5. Elevation (<i>feet</i>): $250\pm$	
H. SIC Code: <u>1311</u>	
Name and Address of Facility Contact	
Name and Address of Facility Contact	
A. Name: Brittany Wilkinson	Title: Air Quality Engineer
B. Mailing Address	
D. Manne Autos	
•	
1. Street Address or P.O. Box: P.O. Box 21468	3. State: OK
1. Street Address or P.O. Box: P.O. Box 21468 2. City: Tulsa	3. State: OK 5. Fax No.:
1. Street Address or P.O. Box: P.O. Box 21468	3. State:OK5. Fax No.:

MDEQ NOTICE OF INTENT FOR (COVERAGE U	NDER THE OIL
PRODUCTION GENERAL PERMIT T	O CONSTRU	CT/OPERATE AIR
EMISSIONS EQUIPMENT AT A SY	YNTHETIC M	INOR SOURCE
Facility (Agency Interest) Information		Section OPGP - A
3. Name and Address of Air Contact (if different)	from Facility Cor	ntact)
A. Name:	Title:	
B. Mailing Address		
1. Street Address or P.O. Box:		
2. City:	3. State:	
4. Zip Code:	5. Fax No.:	
6. Telephone No.:		
7. Email:		
4. Name and Address of Responsible Official for	the Facility	
The Form must be signed by a Responsible Official as dej		nin. Code Pt.2, R. 2.1.C(24).
A. Name: Aaron Daniels	Title:	EHS Manager
B. Mailing Address		
1. Street Address or P.O. Box: P.O. Box 21468	3	
2. City: Tulsa	3. State:	ОК
4. Zip Code: 74121-1468	5. Fax No.:	
6. Telephone No.: 918-491-4227		
7. Email: AaronD@kfoc.net		
C. Is the person above a duly authorized representati	ve and not a corpor	ate officer?
If yes, has written notification of such authorization	been submitted to M	IDEQ?
□ Yes □ No	□ Request for	authorization is attached
5. Type of Oil Production Notice of Intent (Check	k all that apply)	
_	_	
✓ Initial Coverage	□ Re-Coverag	e for existing Coverage
_	—	
Modification with Public Notice	☐ Modificatio	n without Public Notice
_		
Update Compliance Plan		

Facility (Agency Interest) Information

Section OPGP - A

6. Equipment List (*Check all that apply*)

Complete supporting emission calculations must be included for each potential emission unit selected below.

☑ Heater Treater. Include a completed <u>Section OPGP-C Form</u> for each unit.

Condensation Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.

☑ Water Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.

☑ Internal Combustion Engine. Include a completed <u>Section OPGP-D Form</u> for each unit.

✓ Flare. Include a completed <u>Section OPGP-F Form</u> for each unit.

✓ Oil Truck Loading (Section OPGP-B Form)

Component Fugitive Emissions (Section OPGP-B Form)

Other: Water Truck Loading, Pneumatic Controllers, Well Gas, Heater Treater Flash Gas

7. Process/Product Details

Maximum Anticipated Well(s) Production for Facility:

Produced Material	Throughput	Units
Gas	0.175	MMCF/day
Oil	9	barrels/day
Water	5	barrels/day
Other (Specify)		

Maximum Anticipated Throughput for Principal Product(s) (as applicable):

Produced Material	Throughput	Units
Flared Gas	0.175	MMCF/day
Oil	12	barrels/day
Water	50	barrels/day
Other (Specify)		

8. Zoning

- A. Is the facility (either existing or proposed) located in accordance with any applicable city and/or county zoning ordinances? If no, please explain Yes
- B. Is the facility (either existing or proposed) required to obtain any zoning variance to locate/expand the facility at this site? If yes, please explain. No

C. Is the required USGS quadrangle map or equivalent attached?

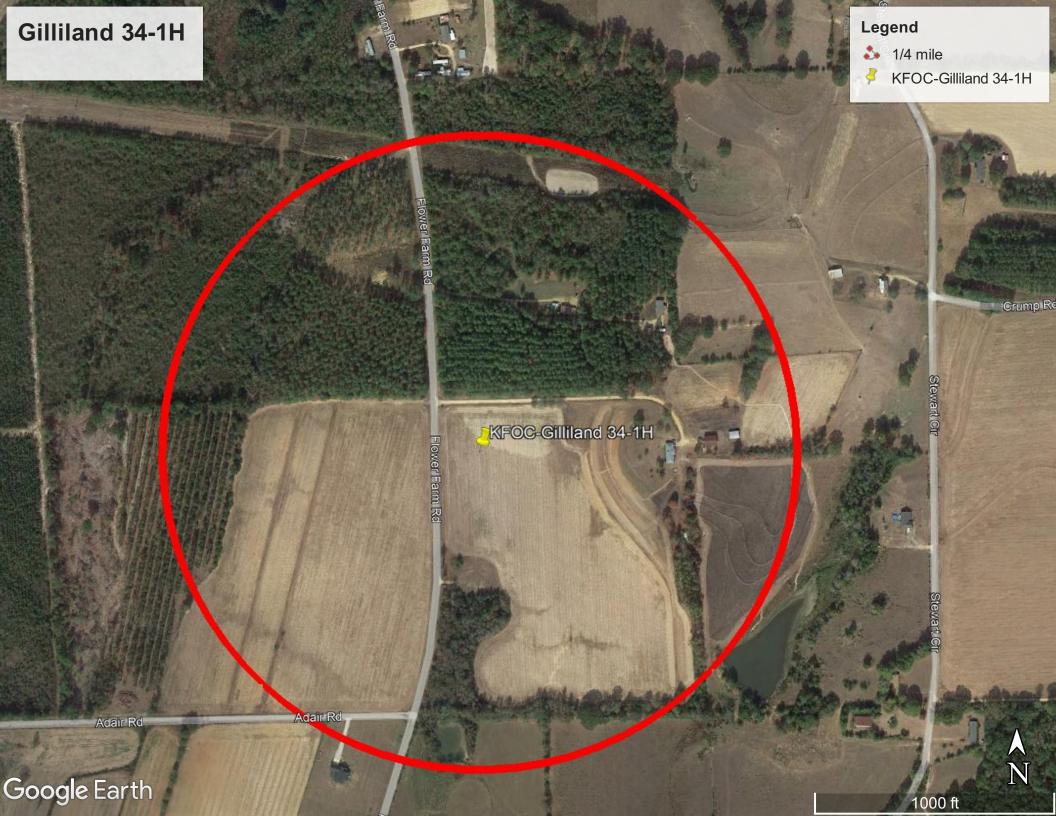
\checkmark	Yes	No

MDEQ NOTIO	CE OF INTENT FOR (COVERAGE UI	NDER THE OIL
	GENERAL PERMIT T		
EMISSIONS Facility (Agency Inter	EQUIPMENT AT A SY est.) Information		Section OPGP - A
	te Registration / Certificat	te of Good Standin	
7. 110 Beeletary of Sta	It Registration / Our mica		lg
If the company applyi or a business trust, Mississippi Secretary	ted to a company that is not at ing for the permit is a corporat the application package sho of State and/or a copy of th the permit will include the c of State.	tion, limited liability o uld include proof og e company's Certific	company, a partnership f registration with the cate of Good Standing.
Pt. 2, R. 2.8.B. to ren Pt. 2, R. 6.2.A(1)(c).	at for an application submitted ew a State Permit to Operate o to renew a Title V Permit gistered and in good standing fississippi.	or in accordance with to be considered tim	h 11 Miss. Admin. Code nely and complete, the
10. Address and Locat	tion of Facility Records		
Develoal Address			
Physical Address 1. Street Address:	6733 S. Yale Avenue		
2. City: Tulsa	0/33 S. 1 alt Avenue	3. State:	ОК
4. County: Tulsa		5. Zip Code:	
6. Telephone No.:	918-491-4439	7. Fax No.:	74150
0. receptione 110	710-471-4457	/. I dA 110	

Facility (Agency Interest) Information

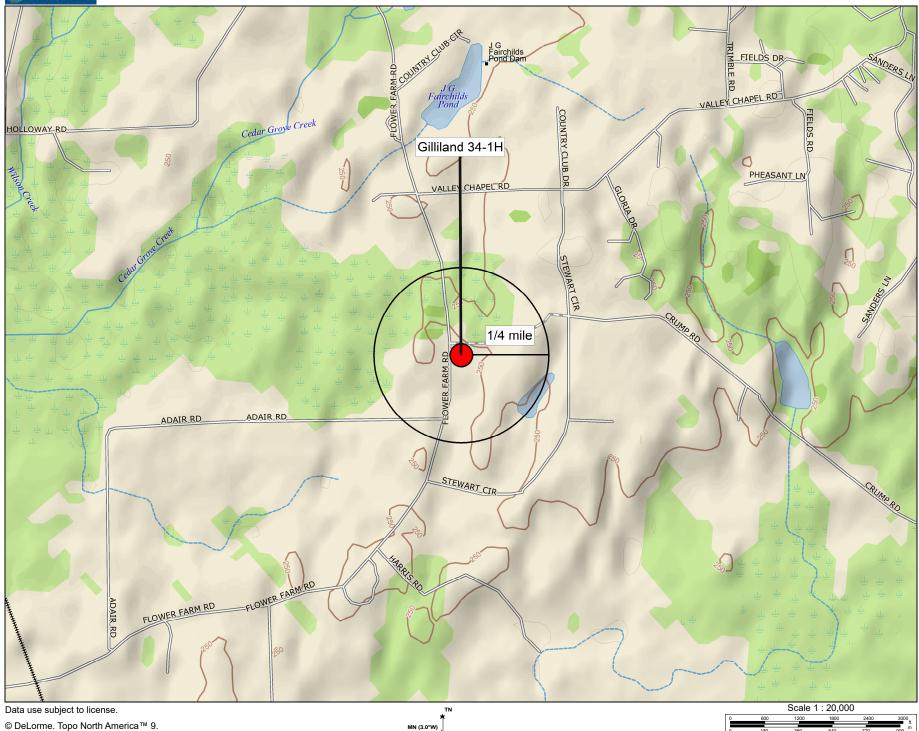
Section OPGP - A

11. Certification

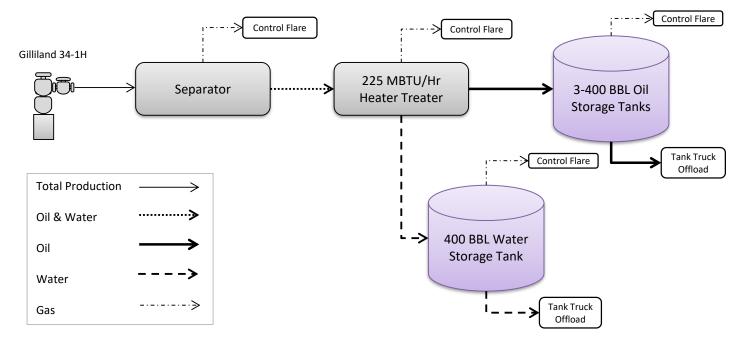

The Form must be signed by a Responsible Official as defined in 11 Miss. Admin. Code Pt. 2, R. 2.1.C.(24).

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature of Responsible Official/DAR


<u>1/8/2022</u> Date 9/8/2027_

Aaron Daniels **Printed Name**


DELORME

Topo North America™ 9

Simplified Process Flow Diagram

Kaiser-Francis Oil Company Gilliland 34-1H Monroe County, MS

The facility is used as a typical oil & gas production facility designed to treat and handle production from the Gilliland 34-1H well completion. Production from the well is routed to a separator. Gas from the separator is routed to a control flare for combustion. Oil and water from the separator are routed to a heater treater for further separation. Off-gas from the heater treater is routed to the aforementioned control flare for combustion. Oil and water from the heater treater are routed to onsite tanks for storage until hauled off-site by tank truck for sales and disposal, respectively. Vapors from the storage tanks are routed to the aforementioned control flare for combustion, except during brief intervals when thief hatches are opened for gauging, sampling, etc. One (1) gasoline-fired tank bottoms pump is also located at this facility. Emissions from the sources listed above, and any related sources, are addressed within this application.

Section OPGP-B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section OGP-B.3 and GHGs in Section OGP-B.4. Emission Point numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

Emission Point ID	TSP ¹	(PM)	PM	-10 ¹	PM	-2.5 ¹	S	02	N	Ox	С	0	V	OC	TI	RS ²	Le	ead	Total	HAPs
Emission Fond ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HT-01	0.00	0.00	0.00	0.01	0.00	0.01	-	-	0.02	0.10	0.02	0.08	0.00	0.01	-	-	-	-	-	-
PE-01	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.12	0.50	0.08	0.34	0.12	0.50	-	-	-	-	-	-
OST-01	-	-	-	-	-	-	-	-	-	-	-	-	0.24	1.08	-	-	-	-	0.01	0.08
OST-02	-	-	-	-	-	-	-	-	-	-	-	-	0.24	1.08	-	-	-	-	0.01	0.08
OST-03	-	-	-	-	-	-	-	-	-	-	-	-	0.24	1.08	-	-	-	-	0.01	0.08
WST-01	-	-	-	-	-	-	-	-	-	-	-	-	0.02	0.08	-	-	-	-	0.00	0.01
FL-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LD-01	-	-	-	-	-	-	-	-	-	-	-	-	25.85	0.32	-	-	-	-	2.35	0.03
LD-02	-	-	-	-	-	-	-	-	-	-	-	-	0.26	0.01	-	-	-	-	0.02	0.00
LC-01	-	-	-	-	-	-	-	-	-	-	-	-	0.16	0.68	-	-	-	-	0.00	0.01
FE-01	-	-	-	-	-	-	-	-	-	-	-	-	0.16	0.73	-	-	-	-	0.00	0.01
12-22-WG	-	-	-	-	-	-	-	-	-	-	-	-	67.01	293.51	-	-	-	-	1.83	8.03
13-22-HT-FG	-	-	-	-	-	-	-	-	-	-	-	-	0.21	0.92	-	-	-	-	0.01	0.04
Totals	0.01	0.03	0.01	0.04	0.01	0.04	0.01	0.03	0.14	0.60	0.10	0.42	94.51	300.00	0.00	0.00	0.00	0.00	4.24	8.37

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section OPGP-B.2: Proposed Allowable Emissions

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

Emission Point	TS	SP ¹	PM	[10 ¹	PM	2.5 ¹	S	02	N	Ox	C	0	V	C	T	RS	Le	ead
ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HT-01	0.00	0.00	0.00	0.01	0.00	0.01	-	-	0.02	0.10	0.02	0.08	0.00	0.01	-	-	-	-
PE-01	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.12	0.50	0.08	0.34	0.12	0.50	-	-	-	-
OST-01	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.00	-	-	-	-
OST-02	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.00	-	-	-	-
OST-03	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.00	-	-	-	-
WST-01	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.00	-	-	-	-
FL-01	0.08	0.35	0.08	0.35	0.08	0.35	0.00	0.00	1.21	5.29	2.41	10.57	1.35	5.98	-	-	-	-
LD-01	-	-	-	-	-	-	-	-	-	-	-	-	25.85	0.32	-	-	-	-
LD-02	-	-	-	-	-	-	-	-	-	-	-	-	0.26	0.01	-	-	-	-
LC-01	-	-	-	-	-	-	-	-	-	-	-	-	0.16	0.68	-	-	-	-
FE-01	-	-	-	-	-	-	-	-	-	-	-	-	0.16	0.73	-	-	-	-
Totals	0.09	0.38	0.09	0.39	0.09	0.39	0.01	0.03	1.35	5.89	2.51	10.99	27.90	8.23	0.00	0.00	0.00	0.00

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² **TRS:** Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H_2S), methyl mercaptan (CH_4S), dimethyl sulfide (C_2H_6S), and dimethyl disulfide ($C_2H_6S_2$).

Section OPGP-B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.01 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission Point ID	Tota	I HAPs	1,3-Bu	tadiene		rimethyl- Itane	Aceta	ldehyde	Acro	olein	Be	nzene	Ethyll	benzene	Form	aldehyde	n-H	lexane	Met	hanol	To	luene	Xy	lenes
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
HT-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PE-01	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OST-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OST-02	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OST-03	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WST-01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FL-01	0.03	0.17	-	-	0.01	0.02	-	-	-	-	0.00	0.02	-	-	-	-	0.02	0.10			0.00	0.02	0.00	0.01
LD-01	2.35	0.03	-	-	-	-	-	-	-	-	0.03	0.00	-	-	-	-	2.32	0.03	-	-	-	-	-	-
LD-02	0.02	0.00	-	-	-	-	-	-	-	-	0.00	0.00	-	-	-	-	0.02	0.00	-	-	-	-	-	-
LC-01	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.01	-	-	-	-	-	-
FE-01	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.01	-	-	-	-	-	-
Totals:	2.40	0.22	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.03	0.02	0.00	0.00	0.00	0.00	2.36	0.15	0.00	0.00	0.00	0.02	0.00	0.01

Section OPGP-B.4: Greenhouse Gas Emissions

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr		Total GHG Mass Basis ton/yr⁵	Total CO ₂ e ton/yr ⁶
Emission Point ID	GWPs ¹	1	1	298	25	22,800	footnote 4			
HT-01	mass GHG	143.99	0.00	0.00	0.00	0.00	0.00		143.99	
	CO ₂ e	143.99	0.00	0.00	0.00	0.00	0.00			143.99
PE-01	mass GHG	59.03	0.00	0.00	0.00	0.00	0.00		59.03	
	CO ₂ e	59.03	0.00	0.00	0.00	0.00	0.00			59.03
OST-01	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
OST-02	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
OST-03	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
WST-01	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
FL-01	mass GHG	4488.05	0.00	0.01	22.59	0.00	0.00		4510.65	
	CO ₂ e	4488.05	0.00	2.98	564.75	0.00	0.00			5055.78
LD-01	mass GHG	0.00	0.00	0.00	0.02	0.00	0.00		0.02	
	CO ₂ e	0.00	0.00	0.00	0.50	0.00	0.00			0.50
LD-02	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00		0.00	
	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00			0.00
LC-01	mass GHG	0.01	0.00	0.00	2.61	0.00	0.00		2.62	
	CO ₂ e	0.01	0.00	0.00	65.25	0.00	0.00			65.26
FE-01	mass GHG	0.00	0.00	0.00	2.05	0.00	0.00		2.05	
	CO ₂ e	0.00	0.00	0.00	51.25	0.00	0.00			51.25
FACILITY TOTAL	mass GHG	4691.08	0.00	0.01	27.27	0.00	0.00		4718.36	
FACILITI IOTAL	CO ₂ e	4691.08	0.00	2.98	681.75	0.00	0.00			5375.81

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

 2 Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or microorganisms.

³ For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a **mass basis** is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO_2 in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO₂e in this total.

Section OPGP-B.5: Stack Parameters and Exit Conditions MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Emission Point numbering must be consistent throughout the application package.

Emission Point ID	Orientation (H-Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume	Geograph (degrees/min	ic Position utes/seconds)
	V=Vertical)	(Yes or No)	(f t)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
HT-01	V	No	15±	250±	500	0.5	8.4	0	33 42 52.50	88 24 17.35
PE-01	V	No	10±	250±	700	0.5	4.4	0	33 42 52.50	88 24 17.35
OST-01	V	No	22±	250±	80	0.2	< 0.01	0	33 42 52.50	88 24 17.35
OST-02	V	No	22±	250±	80	0.2	< 0.01	0	33 42 52.50	88 24 17.35
OST-03	V	No	22±	250±	80	0.2	< 0.01	0	33 42 52.50	88 24 17.35
WST-01	V	No	22±	250±	80	0.2	< 0.01	0	33 42 52.50	88 24 17.35
FL-01	V	No	15±	250±	1500	0.5	553	0	33 42 52.50	88 24 17.35
LD-01	V	No	5±	250±	80	0.3	0.85	0	33 42 52.50	88 24 17.35
LD-02	V	No	5±	250±	80	0.3	0.01	0	33 42 52.50	88 24 17.35

¹ A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

			Kaiser-Francis Oil Compan Gilliland 34-1H Monroe County, MS Section B.6: EMISSION POINT SOL					
						Oper	ating Sched	ule.
Facility Ref. No.:	MDEQ EPN:	Footnote:	Emission Point Description:	Routes To:	Operating Rate/Capacity	Hrs/Day or (Hrs/Yr)	Days/Wk	
HT-01	AA-002		225 MBTU/Hr Heater Treater-Burner Stack		225 MBTU/Hr	24	7	52.143
PE-01	AA-008		Internal Combustion Engine-Exhaust Stack (Honda; Gasoline-Fired Tank Bottoms Pump)		8.7 HP	24	7	52.143
OST-01	AA-003	a	400 BBL Oil Storage Tank-Common Vent	FL-01	1,460 BOPY	24	7	52.143
OST-02	AA-004	а	400 BBL Oil Storage Tank-Common Vent	FL-01	1,460 BOPY	24	7	52.143
OST-03	AA-005	а	400 BBL Oil Storage Tank-Common Vent	FL-01	1,460 BOPY	24	7	52.143
WST-01	AA-006	а	400 BBL Water Storage Tank-Common Vent	FL-01	18,250 BWPY	24	7	52.143
FL-01	AA-001	b	Control Flare		64.2 MMSCF/Yr	24	7	52.143
LD-01	AA-010		Loading Losses-Oil Transfer to Tank Truck		4,380 BOPY	(24.3)	-	-
LD-02	AA-011		Loading Losses-Water Transfer to Tank Truck		18,250 BWPY	(101)	-	-
LC-01	AA-009		Pneumatic Controllers		149 MSCF/Yr	24	7	52.143
FE-01	AA-007		Fugitive Emissions		N/A	24	7	52.143
12-22-WG		с	Well Gas	FL-01	63.9 MMSCF/Yr	24	7	52.143
13-22-HT-FG		d	Heater Treater-Flash Gas	FL-01	43.1 MSCF/Yr	24	7	52.143

Footnotes:

a Vapors from this source are routed to the control flare (EPN: FL-01) for combustion, except during brief intervals when thief hatches will be opened for purposes of sampling, gauging, etc.

b Routine emission limits for this source account for vapors from the storage tanks, well gas, off-gas from the heater treater, and the pilot gas stream. This source may also combust gas from the facility's pressure release system on an emergency and non-routine basis.

c Well gas is routed to the control flare (EPN: FL-01) for combustion.

d Off-gas from this source is routed to the control flare (EPN: FL-01) for combustion.

U	Equipment – I	External Con		ı s	ection OPGP-C
urces Emission P	oint Description				
	Point Designation (Ref.		(HT-01)		
B. Equipmen	Description: <u>Heater</u>	Treater-Burner Stac	<u>k</u>		
C. Manufactu	rer: Unknown	D.	Date of Manuf	facture and No.:	Unknown
	Heat Input ating value): 0.22	5 MMBtu/hr		Nominal Heat nput Capacity:	0.225 MMBtu/hr
G. Use:	Line Heater	\triangleright	Heater Tre	eater 🗌 T	EG Burner
🗌 Spa	ce Heat 🗌 Pr	ocess Heat	Othe	r (describe):	
H. Heat Mecl	anism:	Direct	Indirect		
I. Burner Ty etc.):	pe (e.g., forced draft, na	tural draft,			
J. Additional	Design Controls (e.g.,	FGR, etc.): <u>N/A</u>			
K. Status:	Operating	Propos	ed 🗌	Under Const	ruction
				2017 0	or After
Fuel Type Complete the fol hourly usage, and		g each type of fuel a	nd the amount	used. Specify th	ne units for heat content,
FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE
Produced Field Gas	1218 BTU/ft ³	<0.0007	N/A	185 scf	1.62 MMscf
Please list any fu	el components that are	 nazardous air polluta	ants and the pe	rcentage in the f	uel:

Fue Eng		U	2quipment –	- Internal C	ombusti	ion	Sec	ction OP	GP- D
1.	Em	ission Po	oint Description	on					
	A.	Emission P	oint Designation (Re	ef. No.): AA-00	08 (PE-01)				
	B.	Equipment	Description (includi	ing serial number):	Gasoline-Fi	red Tank Botto	oms Pum	p Engine	
	C.	Manufactur	er: <u>Honda</u>			Manufacture odel No.:	2017		
	E.	Maximum	Heat Input (higher h	eating value):	0.08	MMBtu/hr			
	F.	Rated Powe	er: 8.7	hp		kW			
	G.	Is the engin	e an EPA-certified e	engine?	Yes	Yes or No			
	H.	Use:	Non-emerger	псу	Emer	rgency			
	I.	Displaceme	ent per cylinder:	\leq < 10 Liters		10 to <30 Lite	rs	≥ 30]	Liters
	J.	Engine Igni	tion Type:	Spark Igniti	on	Compres	ssion Ign	nition	
	K.	Engine Bur (check all th		4-stroke	2-strok	e 🗌	Rich Bu	ırn 🗌	Lean Burn
	L.	Status:	\boxtimes	Operating	Propose	ed 🗌	Under C	Construction	
	M.		struction, reconstruction, reconst			n (for	2017	or After	
2.	Fue	el Type							
		-	owing table, identify	• • • •		-	-		
	FU	EL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMU HOURLY U		MAXIM YEARLY U	
	(Gasoline	20,300 BTU/lb	< 0.0080	N/A	0.43 Galle	ons	3767 Gal	lons

				MINOK SC	JUKCE					
Tanl	k Sur	nmary					Se	ectio	n OPGP-l	E
1. E	missi	on Point Descrip	otion							
A B. C.	. Emi . Proc	ssion Point Designatio	on (Ref. uced Oil	· · · · ·)04, & AA			T-02, & OST-3)	_
D	mod	e of construction, reco lification (for existing struction:				2017	or After			_
2. T	'ank I	Data								
A	1. 2.	k Specifications: Design capacity True vapor pressure				<u>16,800</u> <u>4.513</u>	gallons psia @		67.63	°F
	3. 4. 5. 6.	Maximum true vape Reid vapor pressure Density of product Molecular weight o	e at stora at storag	ge temperature: e temperature:		5.246 6.27 N/A 50	psia @ psia @ lb/gal lb/lbmol		76.08 67.63	°F °F
B	. Tan	k Orientation:	🛛 Ve	ertical			Horizontal			
C	. Тур	e of Tank:								
	\boxtimes	Fixed Roof		External Floating	g Roof		Internal Fl	oating	Roof	
		Pressure		Variable Vapor S	Space		Other:			
D	and/ <i>If ye</i> Vapo	the tank equipped with for flare? es, describe below and ors from these sources iency of 98%.	include	the efficiency of a	each.	Yes FL-01) fo	L	n with	No a combustion	
E.		sest City: Jackson, MS New Orleans, LA		Meridian, MS Memphis, TN		Tupelo Baton I	, MS Rouge, LA		Mobile, AL	
F.		n E&P or similar repo eral Permit included f		bed in Condition :			Yes		No	

						RATE	AIR E		NS EQU	ODUCTION GENERAL NT AT A SYNTHETIC
Tan	k S	Sumn	nary							Section OPGP-E
3. I	Hor	rizonta	al Fix	ed Roof 7	Fank					
E C E F	3. C. O. E. F.	Is the tar	iameter g Volu um Thr nk heau nk und	me: oughput: ted? erground?		Yes Yes Alur	ninum/S	feet gal gal/yr] No] No	Aluminum/Diffuse
		G	ray/Lig	ght		Gray	/Mediur	n		Red/Primer
H	H.	Shell Co	onditio	n:	Good			D Po	oor	
4. V	Ver	tical F	ixed	Roof Tar	ık					
A		 Si M M A S W Tu Tu 	hell He hell Dia Iaximu verage /orking urnove Iaximu	ight: ameter: m Liquid Heig Liquid Heig volume: rs per year: m throughpu hk heated?	ght:	 Yes	20 12 19 9.5 16,800 3.81 1,460		et et et	
E			hell Co] Wi] Gr	ristics: lor/Shade: hite/White ay/Light ndition:	\boxtimes	□ ⊠ Good		num/Spec ⁄Iedium □ Poo		Aluminum/Diffuse Red/Primer
C		Roof Ch 1. Ro [oof Co	ristics: lor/Shade: hite/White ay/Light				num/Spec ⁄Iedium	eular	Aluminum/Diffuse Red/Primer
		2. R	oof Co	ndition:	\boxtimes	Good			Poor	
		3. T <u>y</u>	ype:		\square	Cone			Dome	
		4. H	eight:	0.38	3	feet				

			WIINOK SOURCE	
Ta	nk	Sun	nmary	Section OPGP-E
5.	Int	terna	l Floating Roof Tank	
	A.	Tank 1.	Characteristics: Diameter: feet	
		1. 2.	Tank Volume: gal	
		3.	Turnovers per year:	
		4.	Maximum Throughput: gal/yr	
		5.	Number of Columns:	
		6. 7.	Self-Supporting Roof?	
		<i>7</i> . 8.	Image: Structure ColumnImage: Structure ColumnInternal Shell Condition:8" Diameter Pipe	Unknown
			□ Light Rust □ Dense Rust □	Gunite Lining
		9.	External Shell Color/Shade: White/White Aluminum/Specular	Aluminum/Diffuse
			Gray/Light Gray/Medium	Red/Primer
		10.	External Shell Condition: Good Poor	
		11.	Roof Color/Shade:White/WhiteAluminum/SpecularAluminum/Specular	um/Diffuse
			Gray/Light Gray/Medium Red/Pri	imer
		12.	Roof Condition: Good Poor	
	B.	Rim 1.	Seal System: Primary Seal:	□ Vapor-mounted
		2.	Secondary Seal: Shoe-mounted Rim-mounted	□ None
	C.	Deck 1.	Characteristics: Deck Type: Deck Type: Welded	
		2.	Deck Fitting Category: Typical Detail	
6.	Ex	terna	al Floating Roof Tank	
	٨	Ta - 1	Characteristics	
	A.	1 ank	Characteristics feet	
		2.	Tank Volume: gal	
		3.	Turnovers per year:	
		4. 5	Maximum Throughput: gal/yr	
		5.	Internal Shell Condition:	te Lining

-	a					UN SU	INCE				
		nmary	/							Sect	ion OPGP-E
Ex	terna	al Floa	ting Roof	Tank (contin	ued)					
A.	Tank 6.	Paint C	teristics (cont Color/Shade: Vhite/White	inued):	Alumin	um/Spec	ular		Aluminun	n/Dif	fuse
			Bray/Light		Gray/M	ledium			Red/Prime	er	
	7.	Paint C	Condition:		Good			Poor			
B.	Roof 1.	Charact Roof T		_ Pont	oon			Doub	le Deck		
	2.	Roof F	itting Categor	ry:			Typical			Detail	
C.	Tank 1.		action and Rin Construction:	n-Seal Sy	stem:		Welded		R	livete	ed
	2.	Primary	y Seal: Mechanical S	hoe		Liquid-r	nounted		□ V	apor	-mounted
	3.		lary Seal None	Shoe-	mounted	1	🗌 Ri	im-mour	ited		Weather shield
Po	lluta	nt Em	issions								
		10 (5									
A.	Pollu		Emissions:	Worki	ng Loss	(tons/yr)	Bre	eathing L	oss (tons/y	r)	Total Emissions (tons/yr)
	VOC	-			0.12*			0.	50*		0.62*
B.	being	g routed	noted that th to the control f Emissions:				present th	he fixed r	oof emissio	ons p	rior to emissions
-	lutant ¹		Rim Seal	Withdra	wal I	Deck Fitti	ng Dec	ck Seam	Landing		Total Emissions
			Loss	Loss		Loss	U	Loss	Loss ²		(tons/yr)
			(tons/yr)	(tons/y	vr)	(tons/yr) (to	ons/yr)	(tons/yr)		
<u> </u>										+	
<u> </u>											
with	h the O	GP Appli	pollutants inclucation Instruct	ions. A list	t of regul	ated air po					listed in accordance azardous air

		MINOR SOURCE
Ta	ınk	Summary Section OPGP-E
1.	En	nission Point Description
	A. B. C. D.	Emission Point Designation (Ref. No.): AA-006 (WST-01) Product(s) Stored: Produced Water Status: Operating Proposed Under Construction Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2017 or After
2.	Та	nk Data
2.	А .	Tank Specifications: 1. Design capacity 2. True vapor pressure at storage temperature: 0.335 psia @ 67.63 °F 3. Maximum true vapor pressure (as defined in §60.111b) 0.446 psia @ 76.08 °F
	D	 4. Reid vapor pressure at storage temperature: 5. Density of product at storage temperature: 6. Molecular weight of product vapor at storage temp. 6. In the storage temperature is torage temperature. 6. Molecular weight of product vapor at storage temp. 6. In the storage temperature. 7. Storage temperature. 8. Storage temperature. 9. Storage temp
	В.	Tank Orientation:Image: VerticalImage: Horizontal
	C.	Type of Tank:
		☐ Fixed Roof ☐ External Floating Roof ☐ Internal Floating Roof
		Pressure Variable Vapor Space Other:
	D.	Is the tank equipped with a Vapor Recovery System I Yes I No and/or flare? If yes, describe below and include the efficiency of each. Vapors from this source are routed to the control flare (EPN: FL-01) for combustion with a combustion efficiency of 98%.
	E.	Closest City:
		New Orleans, LA Memphis, TN Baton Rouge, LA
	F.	Is an E&P or similar report described in Condition 5.4(5) of the General Permit included for this tank in the Notice of Intent?

N			OTICE OF INTENT FOR COVERAGE UNDER THE OIL PR I TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMEN MINOR SOURCE	
Ta	nk	Sun	nmary	Section OPGP-E
3.			ntal Fixed Roof Tank	
	A. B. C. D. E. F. G.	Shel Wor Max Is th Is th	Il Length: feet Il Diameter: feet Il Diameter: feet rking Volume: gal rking Volume: gal/yr is tank heated? Yes is tank underground? Yes Il Color/Shade: Aluminum/Specular	Aluminum/Diffuse
			Gray/Light Gray/Medium	Red/Primer
	H.	Shel	Il Condition: Good Door	
4.	Ve	rtica	al Fixed Roof Tank	
	A.	Dim 1. 2. 3. 4. 5. 6. 7. 8.	hensions:Shell Height:20feetShell Diameter:12feetMaximum Liquid Height:19feetAverage Liquid Height:9.5feetWorking Volume:16,800galTurnovers per year:47.68Maximum throughput:18,250BBLs/yrIs the tank heated?YesNo	
	B.	Shel 1. 2.	Il Characteristics: Shell Color/Shade: White/White Gray/Light Gray/Light Shell Condition:	Aluminum/Diffuse Red/Primer
	C.	Roo: 1.	f Characteristics: Roof Color/Shade: White/White Aluminum/Specular Gray/Light Gray/Medium	Aluminum/Diffuse Red/Primer
		2.	Roof Condition: \square Good \square Poor	
		3.	Type: 🛛 Cone 🗌 Dome	
		4.	Height: 0.38 feet	

			MINOR SOURCE	
Ta	nk	Sun	nmary	Section OPGP-E
5.	Int	terna	l Floating Roof Tank	
	A.		ar Floating Kool Tank ar Characteristics: Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Number of Columns: gal/yr Self-Supporting Roof? Yes P"x7" Built-up Column 8" Diameter Pipe Internal Shell Condition: Dense Rust Light Rust Dense Rust White/White Aluminum/Specular Gray/Light Gray/Medium External Shell Condition: Good Gray/Light Gray/Medium	Unknown Gunite Lining Aluminum/Diffuse Red/Primer
		12.		num/Diffuse imer
	B.	Rim 1. 2.	Seal System: Primary Seal: Mechanical Shoe Secondary Seal: Shoe-mounted	Vapor-mounted None
	C.	Deck 1. 2.	Characteristics: Deck Type: Deck Fitting Category: Typical Detail	
6.	Ex	terna	al Floating Roof Tank	
	A.	Tank 1. 2. 3. 4. 5.	c Characteristics feet Diameter: feet Tank Volume: gal Turnovers per year: gal/yr Maximum Throughput: gal/yr Internal Shell Condition: Dense Rust Guni	te Lining

Ext A. B.	Tank 6. 7. Roof 1. 2.	Charac Paint C Paint C Paint C Charac Roof T Roof H Constr	ating Roof eteristics (cont Color/Shade: White/White Gray/Light Condition: teristics	inued):	Alum	iinum/Spe /Medium	ecular		_	Aluminu Red/Prim	m/Dif	tion OPGP-E
А. В.	Tank 6. 7. Roof 1. 2. Tank	Charac Paint C Paint C Paint C Charac Roof T Roof H Constr	eteristics (cont Color/Shade: White/White Gray/Light Condition: teristics Type:	inued):	Alum Gray, Good	iinum/Spe /Medium	cular					fuse
В.	 6. 7. Roof 1. 2. Tank 	Paint C Paint C Paint C Charac Roof T Roof H Constr	Color/Shade: White/White Gray/Light Condition: teristics Type:	□ □ □ □ Pon	Gray, Good	/Medium	cular					fuse
B.	Roof 1. 2. Tank	Paint C Charac Roof T Roof H Constr	Condition: teristics Type:		Good					Red/Prim	ner	
B.	Roof 1. 2. Tank	Charac Roof 7 Roof F Constr	teristics Гуре:			l			Poor			
	1. 2. Tank	Roof T Roof H Constr	Гуре:		toon							
	Tank	Constr	Fitting Catego						Doubl	e Deck		
C.				ry:			Турі	ical			Detail	
		Tank (uction and Rin Construction:	m-Seal Sy	ystem:		Wel	ded			Rivete	ed
	2.		ry Seal: Mechanical S	hoe		Liquid	-mour	nted			Vapor	-mounted
	3.		dary Seal None	Shoe	-moun	ted		Rin	n-moun	ted		Weather shield
Pol	lutar	nt Em	issions									
		-										
A.	Fixed Pollu		Emissions:	Work	ing Los	ss (tons/yr	;)	Brea	thing L	oss (tons/	/yr)	Total Emissions (tons/yr)
Ę	VOC				0.04	1*			0.0)2*		0.06*
-												
D	being	routed	to the control				eprese	ent the	e fixed r	oof emiss	tions p	rior to emissions
	utant ¹		of Emissions: Rim Seal Loss (tons/yr)	Withdra Loss (tons/	s	Deck Fit Loss (tons/y		L	x Seam oss ns/yr)	Landing Loss ² (tons/yr		Total Emissions (tons/yr)
with	the OC	GP Appl	pollutants incl ication Instruct ed in the OGP	ions. A lis	st of reg	gulated air						listed in accordance azardous air

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC							
	MINOR SOURCE Flare Section OPGP-F						
Fla			DPGP-F				
1.		uipment Description					
	A.	Emission Point Designation (Ref. No.): AA-001 (FL-01)	-				
	B.		rom): Control flare to combust emissions from oil storage tanks (EPNs: OST-01 through OST-03), water torage tank (EPN: WST-01), well gas (EPN: 12-22-WG), and heater treater flash gas (EPN: 13-22-				
	C.	Manufacturer: <u>N/A</u> D. Model: <u>N/A</u>					
	E.	Status:					
	F.	Requesting a federally enforceable condition to route tank emissions to the flar	е.				
2.	Sys	stem Data					
	A.		Efficiency: 98 % Controlling the following pollutant(s): VOC, HAPs Efficiency: % Controlling the following pollutant(s):				
	B.	Flare Data (if applicable):	are Data (if applicable):				
		1. Flare type: Image: Non-assisted Image: Steam-assisted Image: Air-assisted Image: Other: Image: Other: Image: Steam-assisted	isted				
		2. Net heating value of combusted gas: <u>1218</u> Btu/scf					
		3. Design exit velocity: <u>N/A</u> ft/sec					
		4. System: \boxtimes Auto-ignitor \boxtimes Continuous Flame					
		5. Is the presence of a flare pilot flame monitored? \square Yes \square No					
		If yes, please describe the monitoring: The presence of the flare pilot fl continuously monitored by use thermocouple.*	ame is of a				
		6. Is the auto-ignitor system monitored? Xes No					
		If yes, please describe the monitoring:The flare is equipped with an auto-ignite	r.*				

^{*}KFOC will maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. KFOC will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare.

Compliance Plan

Section OPGP-G

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R. 1.3.A.	2017 or After	2017 or After	N/A
HT-01 Heater Treater	11 Miss Admin Code Pt. 2, R. 1.3 B.	2017 or After	2017 or After	N/A
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(b).	2017 or After	2017 or After	N/A
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(a).	2017 or After	2017 or After	N/A
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R.1.4.A(1).	2017 or After	2017 or After	N/A
PE-01 Gasoline-Fired Engine	40 CFR 60, Subpart JJJJ	2017 or After	2017 or After	N/A
PE-01 Gasoline-Fired Engine	40 CFR 63, Subpart ZZZZ	2017 or After	2017 or After	N/A
FL-01 Control Flare	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	2017 or After	2017 or After	N/A
FE-01 Fugitive Emissions	40 CFR 60, Subpart OOOOa	2017 or After	2017 or After	N/A

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R. 1.3.A.	Opacity	40%	N/A
HT-01 Heater Treater	11 Miss Admin Code Pt. 2, R. 1.3 B.	Opacity	Equivalent Opacity	N/A
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(b).	РМ	$E = 0.8808 * I^{-0.1667}$	N/A
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(a).	РМ	0.6 lb/MMBTU	N/A
HT-01 Heater Treater	11 Miss. Admin. Code Pt. 2, R.1.4.A(1).	SO ₂	4.8 lbs/MMBTU	N/A
PE-01 Gasoline-Fired Engine	40 CFR 60.4233(a)	NOx, CO, VOC	Comply with the emission standards in 40 CFR 60.4231(a) over the entire life of the engine.	If you operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, you must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required if you are an owner or operator. You must also meet the requirements as specified in 40 CFR part 1068, subparts A through D, as they apply to you. If you adjust engine settings according to and consistent with the manufacturer's instructions, your stationary SI internal combustion engine will not be considered out of compliance. (40 CFR 60.4243(a)(1))

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
PE-01 Gasoline-Fired Engine	40 CFR 60.4245(a)(1)-(3)	NOx, CO, VOC	 Owners and operators of stationary SI ICE must keep records of the following: All notifications submitted to comply with this subpart and all documentation supporting any notification. Maintenance conducted on the engine. Since the SI ICE is certified, documentation from the manufacturer that the engine is certified and meet the emission standards and information required in 40 CFR parts 1048, 1054, and 1060, as applicable. 	Recordkeeping of all notifications, documentation, and maintenance shall be maintained.
PE-01 Gasoline-Fired Engine	40 CFR 63.6590(c)	HAPs	This engine is a new area source and meets the requirements of this subpart by meeting the requirements of 40 CFR 60-Subpart JJJJ.	N/A
FL-01 Control Flare	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	H2S	1 grain H ₂ S per 100 standard cubic feet (1 gr/100 scf)	Recordkeeping of H ₂ S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.

MS Oil Production General Permit NOI, Section OPGP-G, v. 2019.1

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FL-01 Control Flare	11 Miss. Admin. Code Pt. 2, R.2.2.B(10).	VOC, HAPs	Flare Operating Requirements	The flare shall be operated at all times when emissions may be vented to it from the oil storage tanks (EPNs: OST-01, OST-02, OST-03), water storage tank (EPN: WST-01), well gas (EPN: 12-22- WG), and heater treater flash gas (EPN: 13-22-HT-FG). The flare is anticipated to provide a significant reduction in hydrocarbon emissions. Based on manufacturer's data, a minimum of 98% reduction can be expected. It should also be noted that the facility will operate the flare such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FL-01 Control Flare	11 Miss. Admin. Code Pt. 2, R.2.2.B(11).	VOC, HAPs	Monitoring and recordkeeping	 KFOC shall maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. KFOC will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare. The flare shall be operated with no visible emissions as determined by EPA Method 22, except for periods not to exceed a total of five (5) minutes during any two (2) consecutive hours. Records of all visual observations/tests and corrective action shall be maintained.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5365a(i) 40 CFR 60.5397a(a) 40 CFR 60.5397a(a)(1)	VOC	 Owners and operators of an affected facility, which is the collection of fugitive emission components at a well site that commenced construction or modification after 9/18/2015, must reduce VOC emissions by complying with \$60.5397a(a)(1) as listed below, unless the affected facility meets the conditions specified in either paragraph (a)(1)(i) or (ii) of \$60.5397a. Monitor all fugitive emission components, as defined in \$60.5430a, in accordance with \$60.5397a(b)-(g); Repair all sources of fugitive emissions (defined as any visible emission from a fugitive emissions component observed using optical gas imaging or an instrument reading of 500 ppm or greater using Method 21 of appendix A-7 to this part) in accordance with \$60.5397a(h); and Keep records in accordance with \$60.5397a(j). 	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5397a(a)(2) 40 CFR 60.5397a(a)(3)	VOC	 If the affected facility meets the conditions specified in either paragraph (a)(1)(i) or (ii) of §60.5397a, owners and operators must comply with either §60.5397a(a)(1) or (a)(2). If complying with §60.5397a(a)(2), the following will apply until such time that any actions in §60.5397a(a)(2)(i) through (v) are performed. 1) Maintain the total production for the well site at or below 15 boe per day based on a rolling 12-month average, according to §60.5410a(k) and §60.5415a(i); 2) Comply with the reporting requirements in §60.5420a(b)(7)(i)(C) 3) Comply with the recordkeeping requirements in §60.5397a(a)(2)(i) through (v) occur, owners and operators must comply with §60.5397a(a)(3). 	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

Fugitive 40 CFR 60.5397a(e) 10 GFR 60.5397a(e) requirements. 40 CFR 60.5397a(f)(1) 40 CFR 60.5397a(g)(1) Conduct an initial monitoring survey within 90 days of the startup of production, as defined in §60.5430a, for each collection of fugitive emissions components at a new well site or by requirements.	EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
Subsequent monitoring surveys must be conducted at least semiannually after the initial surveys must be conducted at least 4 months	FE-01 Fugitive	40 CFR 60.5397a(b) 40 CFR 60.5397a(c) 40 CFR 60.5397a(c) 40 CFR 60.5397a(d) 40 CFR 60.5397a(e) 40 CFR 60.5397a(f)(1)	VOC	 covers the collection of fugitive emissions components at the affected well site(s) and compressor station(s) within each company-defined area in accordance with paragraphs (c) & (d). Fugitive emissions monitoring plans must include the elements specified in paragraphs (c)(1) through (8), at a minimum. Each fugitive emissions monitoring plan must include the elements specified in paragraphs (d)(1) through (3), at a minimum, as applicable. Each monitoring survey shall observe each fugitive emissions component, as defined in §60.5430a, for fugitive emissions. Conduct an initial monitoring survey within 90 days of the startup of production, as defined in §60.5430a, for each collection of fugitive emissions components at a new well site or by June 3, 2017, whichever is later. For a modified well site, conduct an initial monitoring survey within 90 days of the first day of production after the modification, or by June 3, 2017, whichever is later. 	KFOC will comply with all applicable

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5397a(g)(3) 40 CFR 60.5397a(g)(4) 40 CFR 60.5397a(g)(5)	VOC	Fugitive emissions components that cannot be monitored without elevating the monitoring personnel more than 2 meters above the surface may be designated as difficult-to-monitor and must meet the specifications of §60.5397a(g)(3)(i) through (iv). Fugitive emissions components that cannot be monitored because monitoring personnel would be exposed to immediate danger while conducted a monitoring survey may be designated as unsafe-to-monitor and must meet the specifications of §60.5397a(g)(4)(i) through (iv). An affected facility is no longer required to comply with the requirements of paragraph (g)(1) of this section when the owner or operator removes all major production and processing equipment, as defined in §60.5430a, such that the well site becomes a wellhead only well site. If any major production and processing equipment is subsequently added to the well site, then the owner or operator must comply with the requirements in paragraphs (f)(1) and (g)(1) of this section.	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5397a(h) 40 CFR 60.5397a(h)(3) 40 CFR 60.5397a(h)(4)	VOC	Each identified source of fugitive emissions shall be repaired, as defined in §60.5430a, in accordance with paragraphs (h)(1) & (2) of this section. If the repair is technically infeasible, would require a vent blowdown, a compressor station shutdown, a well shutdown or well shut-in, or would be unsafe to repair during operation of the unit, the repair must be completed during the next scheduled compressor station shutdown for maintenance, scheduled well shutdown, scheduled well shut-in, after a scheduled vent blowdown, or within 2 years, whichever is earliest. For purposes of this paragraph (h)(3), a vent blowdown valves to depressurize major production and processing equipment, other than a storage vessel. Each identified source of fugitive emissions must be resurveyed to complete repair according to the requirements in paragraphs (h)(4)(i) through (iv) of this section, to ensure that there are no fugitive emissions.	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5397a(i) 40 CFR 60.5420a(c)(15) 40 CFR 60.5420a(c)	VOC	Records for each monitoring survey shall be maintained as specified §60.5420a(c)(15). For each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, maintain the records identified in paragraphs (c)(15)(i) through (viii) of this section, as applicable. Records must be maintained either onsite or at the nearest local field office for at least 5 years.	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5397a(j) 40 CFR 60.5420a(b) 40 CFR 60.5420a(b)(11) 40 CFR 60.5410a	VOC	Annual reports shall be submitted for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station that include the information specified in §60.5420a(b)(7). Multiple collection of fugitive emissions components at a well site or at a compressor station may be included in a single annual report. Submit an annual report containing the information specified in §60.5420a(b)(1)(i)-(iii), as applicable. The initial annual report is due no later than 90 days after the end of the initial compliance period as determined according to §60.5410a. Subsequent annual reports are due no later than the same date each year as the initial annual report. Submit reports to the EPA via CEDRI, except as outlined in this paragraph (b)(11). (CEDRI can be accessed through the EPA's CDX (https://cdx.epa.gov/).) The initial compliance period begins on August 2, 2016, or upon initial startup, whichever is later, and ends no later than 1 year after the initial compliance period may be less than one full year.	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5410a(j) 40 CFR 60.5410a(k) 40 CFR 60.5415a(h)	VOC	To achieve initial compliance with the fugitive emission standards for each collection of fugitive emissions components at a well site and each collection of fugitive emissions components at a compressor station, comply with paragraphs (j)(1) through (5) of this section. To demonstrate initial compliance with the requirement to maintain the total well site production at or below 15 boe per day based on a rolling 12-month average, as specified in §60.5397a(a)(2), comply with paragraphs (k)(1) through (3) of this section. Demonstrate continuous compliance with the fugitive emission standards specified in §60.5397a(a)(1) according to paragraphs (h)(1) through (4) of this section.	KFOC will comply with all applicable requirements.

Compliance Plan

Section OPGP-G

Part 2. Applicable Requirements

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
FE-01 Fugitive Emissions	40 CFR 60.5415a(i) 40 CFR 60.5415a(j)	VOC	For a well site complying with §60.5397a(a)(2), demonstrate continuous compliance according to paragraphs (i)(1) through (4) of this section. Perform the calculations shown in paragraphs (i)(1) through (4) of this section within 45 days of the end of each month. The rolling 12-month average of the total well site production determined according to paragraph (i)(4) of this section must be at or below 15 boe per day. To demonstrate that the well site produced at or below 15 boe per day for the first 30 days after startup of production as specified in §60.5397a(3), calculate the daily production for each individual well at the well site during the first 30 days of production after completing any action listed in §60.5397a(a)(2)(i) through (v) and sum the individual well production. The calculation must be performed within 45 days of the end of the first 30 days of production after completing any action listed in §60.5397a(a)(2)(i) through (v) after completing any action listed performed within 45 days of the end of the first 30 days of production after completing any action listed in §60.5397a(a)(2)(i) through (v). To convert gas production to equivalent barrels of oil, divide cubic feet of gas produced by 6,000.	KFOC will comply with all applicable requirements.

POINT SOURCE I.D. NUMBER: HT-01

EMISSION SOURCE DESCRIPTION:

225 MBTU/Hr Heater Treater-Burner Stack

D		
	$\Delta \perp \Delta$	•
$\boldsymbol{\nu}$	піп	۱.

Emission Source:	External Combustion Burner		
Annual Hours of Operation:	8760		
Maximum Burner Rating (MMBTU/Hr):	0.225		
Fuel Gas Heat of Combustion (BTU/scf): (based on an actual wet gas analysis)	1218		
Sulfur Concentration of Fuel Gas (ppmv): (conservative estimate)	7		
Fuel Source:	Field Gas		
Max. Hourly Fuel Consumption (SCFH): =	burner rating/fuel gas heat of combustion/80% efficiency	=	230.91
Max. Annual Fuel Consumption (MSCF/Yr): =	hourly fuel consumption x annual hours	=	2,022.77

EMISSION FACTORS:

Unless otherwise noted, emission factors taken from EPA Publication AP-42, "Compilation of Air Pollution Emission Factors" -Natural Gas Combustion (Small Boilers), refer to supporting documentation.

 SO_2 emission factor based on 100% conversion of sulfur compounds in fuel gas, using H_2S fuel composition noted above.

	EMISSION FACTOR	CALCULATED EMISSION RATES:		
POLLUTANT:	(LBS/10 ⁶ SCF)	Hourly (lb/hr)	Annual (TPY)	
Particulate Matter (filterable + condensable)	7.6	0.0018	0.0077	
Sulfur Dioxide	1.182	0.0003	0.0012	
Nitrogen Oxides	100	0.0231	0.1011	
Carbon Monoxide	84	0.0194	0.0850	
Methane (excluded from VOC total)	2.3	0.0005	0.0023	
VOC	5.5	0.0013	0.0056	
TOC	11	0.0025	0.0111	
2-Methylnaphthalene (TAP)	0.0000240	0.0000	0.0000	
3-Methylchloranthrene (TAP)	0.0000018	0.0000	0.0000	
7,12-Dimethylbenz(a)anthrancene (TAP)	0.0000160	0.0000	0.0000	
Acenaphthene (TAP)	0.0000018	0.0000	0.0000	
Acenaphthylene (TAP)	0.0000018	0.0000	0.0000	
Anthracene (TAP)	0.0000024	0.0000	0.0000	
Benz(a)anthracene (TAP)	0.0000018	0.0000	0.0000	
Benzene (TAP)	0.0021000	0.0000	0.0000	
Benzo(a)pyrene (TAP)	0.0000012	0.0000	0.0000	

	EMISSION FACTOR	CALCULATED EMISSION RATES:		
POLLUTANT:	(LBS/10 ⁶ SCF)	Hourly (lb/hr)	Annual (TPY)	
Benzo(b)fluoranthene (TAP)	0.0000018	0.0000	0.0000	
Benzo(g,h,I)perylene (TAP)	0.0000012	0.0000	0.0000	
Benzo(k)fluoranthene (TAP)	0.0000018	0.0000	0.0000	
Chrysene (TAP)	0.0000018	0.0000	0.0000	
Dibenzo(a,h)anthrancene (TAP)	0.0000012	0.0000	0.0000	
Dichlorobenzene (TAP)	0.0012000	0.0000	0.0000	
Fluorathene (TAP)	0.0000030	0.0000	0.0000	
Fluorene (TAP)	0.0000028	0.0000	0.0000	
Formaldehyde (TAP)	0.0750000	0.0000	0.0001	
Hexane (TAP)	1.8000000	0.0004	0.0018	
Indeno(1,2,3-cd)pyrene (TAP)	0.0000018	0.0000	0.0000	
Naphthalene (TAP)	0.0006100	0.0000	0.0000	
Phenanathrene (TAP)	0.0000170	0.0000	0.0000	
Pyrene (TAP)	0.0000050	0.0000	0.0000	
Toluene (TAP)	0.0034000	0.0000	0.0000	
Arsenic (TAP)	0.0002000	0.0000	0.0000	
Beryllium (TAP)	0.0000120	0.0000	0.0000	
Cadmium (TAP)	0.0011000	0.0000	0.0000	
Chromium (TAP)	0.0014000	0.0000	0.0000	
Cobalt (TAP)	0.0000840	0.0000	0.0000	
Manganese (TAP)	0.0003800	0.0000	0.0000	
Mercury (TAP)	0.0002600	0.0000	0.0000	
Nickel (TAP)	0.0021000	0.0000	0.0000	
Selenium (TAP)	0.0000240	0.0000	0.0000	
	Total TAPs	0.00	0.00	
	Total VOC-TAPs	0.00	0.00	
	Total Non VOC & Non TAP-HC	0.00	0.00	
	Total VOC	0.00	0.01	

POINT SOURCE I.D. NUMBER:

PE-01

EMISSION SOURCE DESCRIPTION:

Internal Combustion Engine-Exhaust Stack (Honda; Gasoline-Fired Tank Bottoms Pump)

DATA:				
Emission Source:		Internal Combustion Engine		
Make:		Honda		
Annual Hours of Operation:		8760		
Maximum HP: (provided by operator)		8.7		
Brake Specific Fuel Consumption: (<i>BTU/BHP-Hr</i> ; conservative estimate)		9,000		
Max. Sulfur Concentration in Fuel Ga	as (%):	0.0080		
Fuel Source:		Gasoline		
Max. Hourly Energy Output (HP-Hr)	=	HP Rating x 1-hour	=	8.7
Max. Annual Energy Output (HP-Hr/Yr)	=	HP Rating x Annual Operating Hours	=	76,212.00

EMISSION FACTORS:

NOx & VOC emission factors were taken from the emission standard established in 40 CFR 60 Subpart JJJJ & 40 CFR 1054.105(a). In accordance with the standard, the summation of NOx & HC emissions may not exceed 8.0 g/KW-Hr (6.0 g/BHP-Hr); however, for purposes of permitting, the maximum emissions are used for each pollutant.

Emission factors for all other pollutants were taken from Chapter 3.2 of AP-42, 5th Edition, Supplement B, October 1996 for Gasoline or Diesel Industrial Engines; using brake specific fuel consumption (BSFC) noted above.

EMISSION CALCULATIONS:					
POLLUTANT:	EMISSION FACTOR	CALCULATED EMISSION RATE:			
	(Grams/BHP-Hr)	Average Hourly (lb/hr):	Maximum Hourly (lb/hr):	Annual (TPY):	
PM_{10}	0.408	0.0078	0.0078	0.0343	
PM _{2.5}	0.408	0.0078	0.0078	0.0343	
Sulfur Dioxide	0.343	0.0066	0.0066	0.0288	
Nitrogen Oxides	6.0	0.1151	0.1151	0.5041	
Carbon Monoxide	4.041	0.0775	0.0775	0.3395	
Aldehydes	0.286	0.0055	0.0055	0.0240	
TOC (reported as VOC)	6.0	0.1151	0.1151	0.5041	
	Total VOC	0.12	0.12	0.50	

HLP Engineering, Inc. (www.hlpengineering.com)

This is a sample calculation for EPNs: OST-01 through OST-03.

Emission calculations shown below are presented for informational purposes only as vapors from the oil storage tanks are routed to the control flare (EPN: FL-01) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

"See Above"

EMISSION SOURCE DESCRIPTION:

400 BBL Oil Storage Tank-Common Vent

DATA:			
Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing	·')	
Average Daily Oil Throughput: (Annual Average; BBLD/Tank - Q _{avg})	4		
Maximum Daily Oil Throughput: (BBLD/Tank - Q _{max})	12		
Average VOC Working Losses - L _W (lb/yr):	243.973		
Average VOC Standing Losses - L_S (lb/yr):	992.960		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.134/8760	=	0.16
Max. Hourly Uncontrolled THC Losses (lb/hr)	= $(Ls + (Lw * QMax \div Qavg)) * 1.134/8760$	=	0.22
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	0.70

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:				
POLLUTANT:		CALCULATED EMISSION RATES		
	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000
Methane (excluded from VOC total)	6.20	0.0099	0.0138	0.0435
Ethane (excluded from VOC total)	5.60	0.0090	0.0125	0.0393
Propane	17.60	0.0282	0.0393	0.1234
Iso-Butane	1.50	0.0024	0.0033	0.0105
N-Butane	27.10	0.0434	0.0605	0.1901
Iso-Pentane	1.50	0.0024	0.0033	0.0105
N-Pentane	14.60	0.0234	0.0326	0.1024
Heptane	9.20	0.0147	0.0205	0.0645
Octane	6.90	0.0110	0.0154	0.0484
Other NM/NE Hydrocarbons	1.80	0.0029	0.0040	0.0126

N-Hexane (TAP)	7.90	0.0126	0.0176	0.0554
Benzene (TAP)	0.10	0.0002	0.0002	0.0007
Total Weight Percent:	100.00			
	Total TAP Emissions	0.01	0.02	0.06
	Total VOC Emissions	0.14	0.20	0.62
Total Non VOC & Non TAP-HC		0.02	0.03	0.08
Total Hydrocarbon Emissions		0.16	0.22	0.70

DATA:

DAL	A.	
Emis	sion Source:	Flash Gas from Oil
Flash	a Gas Specific Gravity:	1.0172
	age Oil Throughput: D/Tank)	4
	mum Oil Throughput: D/Tank)	12
Basis	of Emission Estimates:	Comparable Analysis/Vasquez-Beggs Correlation
Flash	n Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 2030-18060114-002A

Estimates for gas volumes and composition associated with this stage of the process were derived from a laboratory test of an oil sample collected at another site under similar conditions (pressure & temperature), refer to supporting documentation. This representative analysis is expected to yield a comparable VOC total but individual component values may vary from site to site. The following table shows the field conditions compared to the results from the laboratory test:

A DI Oil Cronity @ 60°E	Process	Conditions	Gas/Oil Ratio
API Oil Gravity @ 60°F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)
Actual Facility Conditions:			
41	30	120	
	0	0 80	
Laboratory Conditions:			
39.645	23	118	
	0	60	13.2582
Prorated GOR Estimate: 18.51			

Since an oil flash analysis has not been performed on an actual sample collected from this particular producing zone, the "Gas to Oil" (GOR) ratio estimated above will be compared with a value derived from the Vasquez-Beggs Correlation presented in the following table. For purposes of permitting, the higher of the two GOR values will be used within these emission estimates.

	VASQUEZ-B	BEGGS CO	ORRELAT	TION	
	Stock Tank Oil API Gravity (API)		=	41	
I N	Flash Gas Specific Gr	vavity (SG $_i$)	=	1.0172	
Р	Flash Gas Pressure Drop	$(psig) (P_i)$	=	30	
U T	Pressure Vessel Temperatu	the (°F) (T_i) =	120	
1	Atmospheric Pre.	Atmospheric Pressure (P_{atm}) =		14.7	
	· · ·	Dissolved Gas Gravity @ 100-psig (SG _x) = (SG _i)*[1.0+0.00005912*API*T _i *Log(($P_i + P_{atm}$)/114.7))		0.8961	
		Co	nstants		
		°API G	ravity		
	$^{\circ}\text{API} \rightarrow$	< 30	≥ 30	Constants Used based on API Gravity	
	C1	0.0362	0.0178	0.0178	
	C2	1.0937	1.187	1.187	
	C3	25.724	23.931	23.931	
GOR =	$(C1) * (SG_x) * ((P_i + P_{atm})^{C2}) * e^{[(C3)(API)/(T_i + 46)]}$	••••• =	7.88	scf/bbl	

refer to "Correlations for Fluid Physical Property Prediction" Journal of Petroleum Technology, Society of Petroleum Engineers, 1980

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Oil Rate * GOR	=	3.09
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	0.24
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Oil Rate to Avg. Oil Rate	=	0.72
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * 8760/2000	=	1.05

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from the referenced laboratory results; refer to supporting documentation

UNCONTROLLED EMISSIONS SUMMARY:					
POLLUTANT:		CALCULATED EMISSION RATES			
	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	9.770	0.0235	0.0704	0.1027	
Methane (excluded from VOC total)	29.072	0.0698	0.2094	0.3056	
Ethane (excluded from VOC total)	17.787	0.0427	0.1281	0.1870	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	18.960	0.0455	0.1366	0.1993	
Iso-Butane	3.177	0.0076	0.0229	0.0334	
N-Butane	9.336	0.0224	0.0673	0.0981	
Iso-Pentane	3.492	0.0084	0.0252	0.0367	
N-Pentane	3.043	0.0073	0.0219	0.0320	
Iso-Hexane	1.804	0.0043	0.0130	0.0190	
N-Hexane (TAP)	0.931	0.0022	0.0067	0.0098	
Methylcyclopentane	0.000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.331	0.0008	0.0024	0.0035	

Cyclohexane	0.000	0.0000	0.0000	0.0000
Heptanes	1.405	0.0034	0.0101	0.0148
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.163	0.0004	0.0012	0.0017
2,2,4-Trimethylpentane (TAP)	0.010	0.0000	0.0001	0.0001
Octanes	0.539	0.0013	0.0039	0.0057
Ethylbenzene (TAP)	0.012	0.0000	0.0001	0.0001
Xylenes (TAP)	0.071	0.0002	0.0005	0.0007
Nonanes	0.097	0.0002	0.0007	0.0010
Decanes Plus	0.001	0.0000	0.0000	0.0000
Total Weight Percent:	100.000			
	Total TAP Emissions	0.00	0.01	0.02
Total VOC Emissions		0.10	0.31	0.46
Total Non VOC & Non TAP-HC		0.11	0.34	0.49
Total Emissions		0.24	0.72	1.05

Uncontrolled VOC Emission Total (TPY)

Storage Vapors + Oil Flash Gas

= 1.08

DATA:	
Emission Source:	Losses When Opening Thief Hatches
Specific Gravity of Gas:	1.0172
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	34
Number of Tanks in Vent System:	3
Max. Minutes a Hatch is Opened in a Single Hour:	15
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	0.24

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.00
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	0.24
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.01

EMISSION SUMMARY (based on the above referenced oil flash analysis):

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent		Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.000	0.000	0.000	0.000	
Carbon Dioxide (excluded from VOC total)	9.770	0.000	0.023	0.001	
Methane (excluded from VOC total)	29.072	0.001	0.070	0.002	
Ethane (excluded from VOC total)	17.787	0.000	0.043	0.001	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.000	0.000	0.000	
Propane	18.960	0.000	0.046	0.001	
Iso-Butane	3.177	0.000	0.008	0.000	
N-Butane	9.336	0.000	0.022	0.000	

пт				
Iso-Pentane	3.492	0.000	0.008	0.000
N-Pentane	3.043	0.000	0.007	0.000
Iso-Hexane	1.804	0.000	0.004	0.000
N-Hexane (TAP)	0.931	0.000	0.002	0.000
Methylcyclopentane	0.000	0.000	0.000	0.000
Benzene (TAP)	0.331	0.000	0.001	0.000
Cyclohexane	0.000	0.000	0.000	0.000
Heptanes	1.405	0.000	0.003	0.000
Methylcyclohexane	0.000	0.000	0.000	0.000
Toluene (TAP)	0.163	0.000	0.000	0.000
2,2,4-Trimethylpentane (TAP)	0.010	0.000	0.000	0.000
Octanes	0.539	0.000	0.001	0.000
Ethylbenzene (TAP)	0.012	0.000	0.000	0.000
Xylenes (TAP)	0.071	0.000	0.000	0.000
Nonanes	0.097	0.000	0.000	0.000
Decanes Plus	0.001	0.000	0.000	0.000
Other NM/NE HC	0.000	0.000	0.000	0.000
Total Weight Percent:	100.000			
	Total TAP Emissions	0.00	0.00	0.00
	Total VOC Emissions	0.00	0.10	0.00
Total Non	VOC & Non TAP-HC	0.00	0.11	0.00
	Total Emissions	0.00	0.24	0.01

Emission calculations shown below are presented for informational purposes only as vapors from the water storage tank are routed to the control flare (EPN: FL-01) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

WST-01

POINT SOURCE I.D. NUMBER:

EMISSION SOURCE DESCRIPTION:

400 BBL Water Storage Tank-Common Vent

DATA:			
Emission Source:	Water Storage Vapors ('Working' & 'Standing')		
Average Daily Water Throughput: (Annual Average; BBLD - Q _{avg})	50		
Maximum Daily Water Throughput: (BBLD - Q _{max})	50		
Average VOC Working Losses - L _W (lb/yr):	81.503		
Average VOC Standing Losses - L _S (lb/yr):	30.524		
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to supporting documentation for summary		
Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.134/8760	=	0.01
Max. Hourly Uncontrolled THC Losses (lb/hr)	= $(Ls + (Lw * QMax \div Qavg)) * 1.134/8760$	=	0.01
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	0.06

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference supporting documentation.

UNCONTROLLED EMISSIONS SUMMARY:					
		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000	
Methane (excluded from VOC total)	6.20	0.0009	0.0009	0.0039	
Ethane (excluded from VOC total)	5.60	0.0008	0.0008	0.0036	
Propane	17.60	0.0026	0.0026	0.0112	
Iso-Butane	1.50	0.0002	0.0002	0.0010	
N-Butane	27.10	0.0039	0.0039	0.0172	
Iso-Pentane	1.50	0.0002	0.0002	0.0010	
N-Pentane	14.60	0.0021	0.0021	0.0093	
Heptane	9.20	0.0013	0.0013	0.0058	
Octane	6.90	0.0010	0.0010	0.0044	
Other NM/NE Hydrocarbons	1.80	0.0003	0.0003	0.0011	

N-Hexane (TAP)	7.90	0.0011	0.0011	0.0050
Benzene (TAP)	0.10	0.0000	0.0000	0.0001
Total Weight Percent:	100.00			
	Total TAP Emissions	0.00	0.00	0.01
	Total VOC Emissions	0.01	0.01	0.06
Total Non VOC & Non TAP-HC		0.00	0.00	0.01
Total I	Hydrocarbon Emissions	0.01	0.01	0.06

Flash Gas from Brine Solution
30
120
0.6927
50
50
0.3
API Documentation & Actual Wet Gas Analysis (Refer to supporting documentation)

Flash Gas Analysis Report Number:

Southern Petroleum Laboratories Report No.: 2030-22040183-001A

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	=	Brine Rate * GWR	=	0.63
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	0.03
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Avg. Emissions * Ratio of Max. Water Rate to Avg. Water Rate	=	0.03
Annual Potential Uncontrolled Flash Emissions (TPY)	=	Hourly * 8760/2000	=	0.13

EMISSION ESTIMATES:

The magnitude of the solubility of natural gas in the interstitial water present in oil sands was studied by The American Petroleum Institute (API) and presented in a 1944 document entitled, "P-V-T and Solubility Relations". Results of these studies have been projected to provide estimates of gas volumes present in the brine solution handled at this site within the specific pressure and temperature ranges expected. The composition of this gas is based on the referenced analysis.

EMISSIONS SUMMARY:					
POLLUTANT:		CALCULATED EMISSION RATES			
	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.1487	0.0004	0.0004	0.0015	
Carbon Dioxide (excluded from VOC total)	0.1675	0.0001	0.0001	0.0002	
Methane (excluded from VOC total)	66.2849	0.0221	0.0221	0.0871	
Ethane (excluded from VOC total)	15.0336	0.0050	0.0050	0.0198	
Hydrogen Sulfide (excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Propane	9.0628	0.0030	0.0030	0.0119	
Iso-Butane	1.1902	0.0004	0.0004	0.0016	
N-Butane	3.3173	0.0011	0.0011	0.0044	

Iso-Pentane	0.8633	0.0003	0.0003	0.0011
N-Pentane	0.9645	0.0003	0.0003	0.0013
Iso-Hexane	1.1928	0.0004	0.0004	0.0016
N-Hexane (TAP)	0.2763	0.0001	0.0001	0.0004
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000
Benzene (TAP)	0.0561	0.0000	0.0000	0.0001
Cyclohexane	0.0000	0.0000	0.0000	0.0000
Heptanes	0.1492	0.0000	0.0000	0.0002
Methylcyclohexane	0.0000	0.0000	0.0000	0.0000
Toluene (TAP)	0.0569	0.0000	0.0000	0.0001
2,2,4-Trimethylpentane (TAP)	0.0661	0.0000	0.0000	0.0001
Octanes Plus	0.1501	0.0001	0.0001	0.0002
Ethylbenzene (TAP)	0.0032	0.0000	0.0000	0.0000
Xylenes (TAP)	0.0166	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.00	0.00	0.00
	Total VOC Emissions	0.01	0.01	0.02
Total Nor	Total Non VOC & Non TAP-HC		0.03	0.11
	Total Emissions	0.03	0.03	0.13

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Brine Flash Gas	=	0.08
DATA:			
Emission Source:	Losses When Opening Thief Hatches		
Specific Gravity of Gas:	0.6927		
Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)	47		
Max. Minutes a Hatch is Opened in a Single Hour:	15		
Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates)	0.01		

Avg. Hourly Emissions (lb/hr)	=	Annual Total/8760 (hrs/yr)	=	0.00
Maximum Hourly Emissions (lb/hr)	=	Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	0.01
Maximum Annual Emissions (TPY)	=	Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.00

EMISSION SUMMARY (based on the above referenced actual wet gas analysis):								
		CALCU	ULATED EMISS	SION RATES				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)				
Nitrogen (excluded from VOC total)	1.1487	0.000	0.000	0.000				
Carbon Dioxide (excluded from VOC total)	0.1675	0.000	0.000	0.000				
Methane (excluded from VOC total)	66.2849	0.000	0.007	0.001				
Ethane (excluded from VOC total)	15.0336	0.000	0.002	0.000				

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.0000	0.000	0.000	0.000	
Propane	9.0628	0.000	0.001	0.000	
Iso-Butane	1.1902	0.000	0.000	0.000	
N-Butane	3.3173	0.000	0.000	0.000	
Iso-Pentane	0.8633	0.000	0.000	0.000	
N-Pentane	0.9645	0.000	0.000	0.000	
Iso-Hexane	1.1928	0.000	0.000	0.000	
N-Hexane (TAP)	0.2763	0.000	0.000	0.000	
Methylcyclopentane	0.0000	0.000	0.000	0.000	
Benzene (TAP)	0.0561	0.000	0.000	0.000	
Cyclohexane	0.0000	0.000	0.000	0.000	
Heptanes	0.1492	0.000	0.000	0.000	
Methylcyclohexane	0.0000	0.000	0.000	0.000	
Toluene (TAP)	0.0569	0.000	0.000	0.000	
2,2,4-Trimethylpentane (TAP)	0.0661	0.000	0.000	0.000	
Octanes Plus	0.1501	0.000	0.000	0.000	
Ethylbenzene (TAP)	0.0032	0.000	0.000	0.000	
Xylenes (TAP)	0.0166	0.000	0.000	0.000	
Total Weight Percent:	100.0000				
	0.00	0.00	0.00		
	Total VOC Emissions				
Total Nor	n VOC & Non TAP-HC	0.00	0.01	0.00	
	Total Emissions	0.00	0.01	0.00	

FL-01

Control Flare

POINT SOURCE I.D. NUMBER:

EMISSION SOURCE DESCRIPTION:

DATA:	
Emission Source:	Unburned Hydrocarbons and Products of Combustion
Atmospheric Gas Streams:	
Gas Stream #1:	Storage Tank Vapors
Gas Heat of Combustion (BTU/Ft ³ -calculated value):	1897
Low Pressure Gas Streams:	
Gas Stream #2a:	Well Gas
Gas Heat of Combustion (BTU/Ft ³ -actual wet gas analysis):	1218
Gas Stream #2b:	Heater Treater-Flash Gas
Gas Heat of Combustion (BTU/Ft ³ -representative analysis):	1735
Pilot Feed:	Yes
Gas Heat of Combustion (BTU/Ft ³ -actual wet gas analysis):	1218
Combustion Efficiency:	98% for all HC

Gas Stream #1: Storage Ta	nk Vapors					
Gas volume estimates are suppo	orted by the cald			through OST-03 &	WST-01 and are o	utlined below:
	r	INPU	T			
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT ³)		Specific Gravity of Gas	
13.53	8760	98		1897	1.1	976
		CALCULA	TIONS			
	=	gas rate (scf/hr)	x	efficiency	x	usage (hrs/yr)
Gas Combusted (annual hourly average)	=	13.53	x	0.98	x	8,760
(annual nourry average)	=	116,152	scf/yr	=	13.26	SCF/hr
	=	gas rate (scf/yr)	x	gas heat of combustion (BTU/scf)		(BTU/scf)
Heat Content (annual hourly average)	=	116,152	x		1897	
(annual nourry average)	=				0.0252	MMBTU/Hr
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)
Emissions (lbs/hr)	=	1.1976	x	0.0764	x	13.53
(105/111)	=	1.24	lbs/hr			
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)
Emissions (TPY)	=	1.1976	x	0.0000382	x	118,523
(111)	=	5.42	TPY			

SPECIATION FACTORS:

Speciation of the flash gas mixture is based on a weighted average of those streams from the tank vents directed to the flare; refer to the weighted average calculation in supporting documentation.

		CALCULATED EMISSION RATES				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.031	0.0004	0.0004	0.0017		
Carbon Dioxide (excluded from VOC total)	5.642	0.0698	0.0698	0.3059		
Methane (excluded from VOC total)	21.003	0.0052	0.0052	0.0228		
Ethane (excluded from VOC total)	12.882	0.0032	0.0032	0.0140		
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	0.0000		
Propane	18.150	0.0045	0.0045	0.0197		
Iso-Butane	2.459	0.0006	0.0006	0.0027		
N-Butane	16.205	0.0040	0.0040	0.0176		
Iso-Pentane	2.631	0.0007	0.0007	0.0029		
N-Pentane	7.562	0.0019	0.0019	0.0082		
Iso-Hexanes	1.073	0.0003	0.0003	0.0012		
N-Hexane (TAP)	3.673	0.0009	0.0009	0.0040		
Methylcyclopentane	0.000	0.0000	0.0000	0.0000		
Benzene (TAP)	0.232	0.0001	0.0001	0.0003		
Cyclohexane	0.000	0.0000	0.0000	0.0000		
Heptanes	4.487	0.0011	0.0011	0.0049		
Methylcyclohexane	0.000	0.0000	0.0000	0.0000		
Toluene (TAP)	0.096	0.0000	0.0000	0.0001		
2,2,4-Trimethylpentane (TAP)	0.006	0.0000	0.0000	0.0000		
Octanes	3.053	0.0008	0.0008	0.0033		
Ethylbenzene (TAP)	0.007	0.0000	0.0000	0.0000		
Xylenes (TAP)	0.041	0.0000	0.0000	0.0000		
Nonanes	0.056	0.0000	0.0000	0.0001		
Decanes Plus	0.000	0.0000	0.0000	0.0000		
Other NM/NE HC	0.712	0.0002	0.0002	0.0008		
TOTAL WEIGHT PERCENT:	TOTAL WEIGHT PERCENT: 100.000					
TOTAL TAP	EMISSIONS:	0.00	0.00	0.00		
TOTAL VOC 1	EMISSIONS:	0.01	0.01	0.07		
TOTAL Non-VOC & N	on-TAP HC:	0.01	0.01	0.04		
TOTAL	EMISSIONS:	0.09	0.09	0.41		

Gas Stream #2a: Well Gas						
Gas volume estimates are suppo	orted by the cal	culations for EPN: 12-22-WG	i:			
		INPU	Т			
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT ³)		Specific Gr	avity of Gas
7,291.67	8760	98		1218	0.6	927
		CALCULA	TIONS			
~ ~	=	gas rate (scf/hr)	x	efficiency	x	usage (hrs/yr)
Gas Combusted (annual hourly average)	=	7,291.67	x	0.98	x	8,760
(annual nourry average)	=	62,597,529	scf/yr	=	7,145.84	SCF/hr
	=	gas rate (scf/yr)	x	gas heat of combustion (BTU/scf)		(BTU/scf)
Heat Content (annual hourly average)	=	62,597,529	x		1218	
(annual nourly average)	=				8.7036	MMBTU/Hr
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)
Emissions (lbs/hr)	=	0.6927	x	0.0764	x	7,291.67
(105/117)	=	385.89	lbs/hr			
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)
Emissions (TPY)	=	0.6927	x	0.0000382	x	63,875,029
(111)	=	1,690.21	ТРҮ			

SPECIATION FACTORS:

Speciation of the well gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-22040183-001 in supporting documentation.

		C	ALCULATED EN	MISSION RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen (excluded from VOC total)	1.1487	4.4325	4.4325	19.4146
Carbon Dioxide (excluded from VOC total)	0.1675	0.6462	0.6462	2.8304
Methane (excluded from VOC total)	66.2849	5.1158	5.1158	22.4070
Ethane (excluded from VOC total)	15.0336	1.1603	1.1603	5.0820
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0000	0.0000	0.0000	0.0000
Propane	9.0628	0.6994	0.6994	3.0636
Iso-Butane	1.1902	0.0919	0.0919	0.4023
N-Butane	3.3173	0.2560	0.2560	1.1214
Iso-Pentane	0.8633	0.0666	0.0666	0.2918
N-Pentane	0.9645	0.0744	0.0744	0.3260
Iso-Hexanes	1.1928	0.0921	0.0921	0.4032
N-Hexane (TAP)	0.2763	0.0213	0.0213	0.0934
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000

Benzene (TAP)	0.0561	0.0043	0.0043	0.0189
Cyclohexane	0.0000	0.0000	0.0000	0.0000
Heptanes	0.1492	0.0115	0.0115	0.0504
Methylcyclohexane	0.0000	0.0000	0.0000	0.0000
Toluene (TAP)	0.0569	0.0044	0.0044	0.0192
2,2,4-Trimethylpentane (TAP)	0.0661	0.0051	0.0051	0.0224
Octanes Plus	0.1501	0.0116	0.0116	0.0507
Ethylbenzene (TAP)	0.0032	0.0002	0.0002	0.0011
Xylenes (TAP)	0.0166	0.0013	0.0013	0.0056
TOTAL WEIGHT PERCENT:	100.0000			
TOTAL TAP	TOTAL TAP EMISSIONS:			0.16
TOTAL VOC	1.34	1.34	5.87	
TOTAL Non-VOC & N	TOTAL Non-VOC & Non-TAP HC:			27.49
TOTAL	12.70	12.70	55.60	

Gas Stream #2b: Heater Treater-Flash Gas

Gas volume estimates are supported by the calculations for EPN: 13-22-HT-FG:

		INPU	Т				
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT ³)		Specific Gr	avity of Gas	
4.92	8760	98		1735	1.0)331	
		CALCULA	TIONS				
	=	gas rate (scf/hr)	x	efficiency	x	usage (hrs/yr)	
Gas Combusted (annual hourly average)	=	4.92	x	0.98	x	8,760	
(annual nourry average)	=	42,237	scf/yr	=	4.82	SCF/hr	
H C	=	gas rate (scf/yr)	x	gas he	eat of combustion	(BTU/scf)	
Heat Content (annual hourly average)	=	42,237	42,237 x		1735		
	=				0.0084	MMBTU/Hr	
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)	
Emissions (lbs/hr)	=	1.0331	x	0.0764	x	4.92	
(105/117)	=	0.39	lbs/hr				
Uncontrolled Annual Emissions (TPY)	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)	
	=	1.0331	x	0.0000382	x	43,099	
(111)	=	1.70	TPY				

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from PENCOR Report No.: 32905-5007058311 in supporting documentation.

		CALCULATED EMISSION RATES				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	0.663	0.0026	0.0026	0.0113		
Carbon Dioxide (excluded from VOC total)	0.886	0.0034	0.0034	0.0151		
Methane (excluded from VOC total)	31.103	0.0024	0.0024	0.0106		
Ethane (excluded from VOC total)	13.599	0.0011	0.0011	0.0046		
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	0.0000		
Propane	17.574	0.0014	0.0014	0.0060		
Iso-Butane	7.411	0.0006	0.0006	0.0025		
N-Butane	10.840	0.0008	0.0008	0.0037		
Iso-Pentane	5.195	0.0004	0.0004	0.0018		
N-Pentane	4.017	0.0003	0.0003	0.0014		
Iso-Hexanes	2.715	0.0002	0.0002	0.0009		
N-Hexane (TAP)	1.562	0.0001	0.0001	0.0005		
Methylcyclopentane	0.650	0.0001	0.0001	0.0002		
Benzene (TAP)	0.130	0.0000	0.0000	0.0000		
Cyclohexane	0.319	0.0000	0.0000	0.0001		
Heptanes	0.888	0.0001	0.0001	0.0003		
Methylcyclohexane	0.268	0.0000	0.0000	0.0001		
Toluene (TAP)	0.212	0.0000	0.0000	0.0001		
2,2,4-Trimethylpentane (TAP)	0.124	0.0000	0.0000	0.0000		
Octanes	0.254	0.0000	0.0000	0.0001		
Ethylbenzene (TAP)	0.005	0.0000	0.0000	0.0000		
Xylenes (TAP)	0.022	0.0000	0.0000	0.0000		
Nonanes	0.092	0.0000	0.0000	0.0000		
Decanes Plus	1.471	0.0001	0.0001	0.0005		
Other Nm/NE HC	0.000	0.0000	0.0000	0.0000		
TOTAL WEIGHT PERCENT:	100.000					
TOTAL TAP I	EMISSIONS:	0.00	0.00	0.00		
TOTAL VOC I	EMISSIONS:	0.00	0.00	0.02		
TOTAL Non-VOC & N	on-TAP HC:	0.00	0.00	0.02		
TOTAL	EMISSIONS:	0.01	0.01	0.06		

Thot Gas (maximum gas ne	wrate based	on conservative estimate	<i>,</i>				
	1	INPU	Т				
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT ³)		Specific Gravity of Gas		
21.00	8760	98		1218	0.6	5927	
		CALCULA	TIONS				
~ ~	=	gas rate (scf/hr)	x	efficiency	x	usage (hrs/yr)	
Gas Combusted (annual hourly average)	=	21.00	x	0.98	x	8,760	
(annual nourty average)	=	180,281	scf/yr	=	20.58	SCF/hr	
	=	gas rate (scf/yr)	x	gas heat of combustion (BTU/scf)			
Heat Content (annual hourly average)	=	180,281	x	1218			
(annual nourry average)	=				0.0251 MMBTU/Hr		
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)	
Emissions (lbs/hr)	=	0.6927	x	0.0764	x	21.00	
(105/117)	=	1.11	lbs/hr				
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)	
Emissions (TPY)	=	0.6927	x	0.0000382	x	183,960	
(111)	=	4.87	ТРҮ				

Pilot Gas (maximum gas flowrate based on conservative estimate):

SPECIATION FACTORS:

Speciation of the pilot gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-22040183-001A in supporting documentation.

		CALCULATED EMISSION RATES				
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	1.1487	0.0128	0.0128	0.0559		
Carbon Dioxide (excluded from VOC total)	0.1675	0.0019	0.0019	0.0082		
Methane (excluded from VOC total)	66.2849	0.0147	0.0147	0.0645		
Ethane (excluded from VOC total)	15.0336	0.0033	0.0033	0.0146		
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0000	0.0000	0.0000	0.0000		
Propane	9.0628	0.0020	0.0020	0.0088		
Iso-Butane	1.1902	0.0003	0.0003	0.0012		
N-Butane	3.3173	0.0007	0.0007	0.0032		
Iso-Pentane	0.8633	0.0002	0.0002	0.0008		
N-Pentane	0.9645	0.0002	0.0002	0.0009		
Iso-Hexanes	1.1928	0.0003	0.0003	0.0012		
N-Hexane (TAP)	0.2763	0.0001	0.0001	0.0003		
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000		

Benzene (TAP)	0.0561	0.0000	0.0000	0.0001
Cyclohexane	0.0000	0.0000	0.0000	0.0000
Heptanes	0.1492	0.0000	0.0000	0.0001
Methylcyclohexane	0.0000	0.0000	0.0000	0.0000
Toluene (TAP)	0.0569	0.0000	0.0000	0.0001
2,2,4-Trimethylpentane (TAP)	0.0661	0.0000	0.0000	0.0001
Octanes Plus	0.1501	0.0000	0.0000	0.0001
Ethylbenzene (TAP)	0.0032	0.0000	0.0000	0.0000
Xylenes (TAP)	0.0166	0.0000	0.0000	0.0000
TOTAL WEIGHT PERCENT:	100.0000			
TOTAL TAP EMISSIONS:		0.00	0.00	0.00
TOTAL VOC EMISSIONS:		0.00	0.00	0.02
TOTAL Non-VOC & N	0.02	0.02	0.08	
TOTAL	EMISSIONS:	0.04	0.04	0.16

Total of Average Hourly VOC emissions estimated for this source:1.35 Lbs/HrTotal of Maximum Hourly VOC emissions estimated for this source:1.35 Lbs/HrTotal of Maximum Annual VOC emissions estimated for this source:5.98 TPY

CALCULATIONS - Selected Combustion Products

Summary of all routine streams combusted by this flare:

Gas Stream	Gas Stream Annual Operating Hours		Maximum Flowrate (SCF/Hr)	Average Heat Rate (MMBTU/Hr)	Maximum Heat Rate (MMBTU/Hr)
1. Storage Tank Vapors	8760	13.53	13.53	0.0252	0.0252
2a. Well Gas	8760	7291.67	7291.67	8.7036	8.7036
2b. Heater Treater-Flash Gas	8760	4.92	4.92	0.0084	0.0084
Pilot Feed	8760	21.00	21.00	0.0251	0.0251
	Totals:	7,331.12	7,331.12	8.76	8.76

Emission factor for soot is from AP-42 "Compilation of Air Pollution Emission Factors" for an industrial burn flare stack (refer to supporting documentation for copies).

 SO_2 emissions based on the composite H_2S composition of the flare gas streams assuming stoichiometric combustion.

	Emission	CALCULATED EMISSION RATES			
POLLUTANT:	Factor (lb/SCF)	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Soot (expressed as PM_{10})	0.000011	0.08	0.08	0.35	
Soot (expressed as PM _{2.5})	0.000011	0.08	0.08	0.35	
SO ₂	N/A	0.00	0.00	0.00	

	Emission	CALCULATED EMISSION RATES			
POLLUTANT:	Factor	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen Oxides	0.1380	1.21	1.21	5.29	
СО	0.2755	2.41	2.41	10.57	

Emission factors for nitrogen oxide and carbon monoxide are from a 1983 CMA document entitled "A Report on a Flare Efficiency Study", for a non-assisted industrial burn flares. (refer to supporting documentation for copies).

POINT SOURCE I.D. NUMBER:

LD-01

EMISSION SOURCE DESCRIPTION:

Loading Losses-Oil Transfer to Tank Truck

DATA:		
Emission Source:	Vapors from Oil Truck Loading	
Maximum Annual Loading Volume-Barrels (Q):	4,380	
Average Oil Temperature - °F:	80	
Average Oil Temperature - °R (T):	540	
API Oil Gravity@ 100 °F (APIG):	44.5	
Vapor Molecular Weight - lb/lb/mole (M):	50	
Saturation Factor (S):	0.6	
Reid Vapor Pressure = -1.699 + (0.179 x APIG): (from Eq. 3-5 of API Pub. No.: 4683)	6.27	
True Vapor Pressure (P): (from Fig. 7.1-13b of AP-42)	5.64	
Loading Rate-Barrels/Hr (R): (conservative estimate)	180	
Basis of Loading Loss Estimates:	AP-42; June 2008 edition; refer to supporting documentation	n
Annual Uncontrolled Total Emissions (TPY)	= 12.46 * S * P * M/T*Q*42/2000/1000 gallons loaded = 0	.36
Hourly Uncontrolled Total Emissions (lb/hr)	= 12.46 * S * P * M/T * R * 42/1000 gallons loaded = 29	9.31
Max. Hourly Uncontrolled Total Emissions (lb/hr)	= $12.46 * S * P * M/T * R * 42/1000$ gallons loaded = 29	9.31

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference supporting documentation.

EMISSIONS SUMMARY:						
		CALCULA	N RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000		
Methane (excluded from VOC total)	6.20	1.8172	1.8172	0.0223		
Ethane (excluded from VOC total)	5.60	1.6414	1.6414	0.0202		
Propane	17.60	5.1586	5.1586	0.0634		
Iso-Butane	1.50	0.4397	0.4397	0.0054		
N-Butane	27.10	7.9430	7.9430	0.0976		
Iso-Pentane	1.50	0.4397	0.4397	0.0054		
N-Pentane	14.60	4.2793	4.2793	0.0526		
Heptane	9.20	2.6965	2.6965	0.0331		
Octane	6.90	2.0224	2.0224	0.0248		
Other NM/NE Hydrocarbons	1.80	0.5276	0.5276	0.0065		

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
N-Hexane (TAP)	7.90	2.3155	2.3155	0.0284	
Benzene (TAP)	0.10	0.0293	0.0293	0.0004	
Total Weight Percent	100.00				
	Total TAP Emissions	2.35	2.37	0.03	
	25.85	25.85	0.32		
Total Nor	3.46	3.46	0.04		
	Total Emissions	29.31	29.31	0.36	

Calculated Max. Gas Flowrate (SCFH) = **216.93**

POINT SOURCE I.D. NUMBER:

LD-02

EMISSION SOURCE DESCRIPTION:

Loading Losses-Water Transfer to Tank Truck

DATA:	
Emission Source:	Vapors from Water Truck Loading
Maximum Annual Loading Volume-Barrels (Q):	18,250
Average Oil Temperature - °F:	80
Average Oil Temperature - °R (T):	540
API Oil Gravity@ 100 °F (APIG):	44.5
Vapor Molecular Weight - lb/lb/mole (M):	50
Saturation Factor (S):	0.6
Reid Vapor Pressure = -1.699 + (0.179 x APIG): (from Eq. 3-5 of API Pub. No.: 4683)	6.27
True Vapor Pressure (P):	5 ()

5.64 (from Fig. 7.1-13b of AP-42) Loading Rate-Barrels/Hr (R): 180 (conservative estimate) **Basis of Loading Loss Estimates:** AP-42; June 2008 edition; refer to supporting documentation Annual Uncontrolled Total Emissions (TPY) = 12.46 * S * P * M/T*Q*42/2000/1000 gallons loaded * 99% Red = 0.01 Hourly Uncontrolled Total Emissions (lb/hr) = 12.46 * S * P * M/T*R*42/1000 gallons loaded * 99% Red 0.29 = Max. Hourly Uncontrolled Total Emissions (lb/hr) = 12.46 * S * P * M/T*R*42/1000 gallons loaded * 99% Red 0.29 =

*Emissions are calculated using the total volume of produced water loaded as crude oil and are then reduced based on the assumption that this total volume is 99% water and 1% hydrocarbons.

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference supporting documentation.

		CALC	CULATED EMISSION RA	ГES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000
Methane (excluded from VOC total)	6.20	0.0180	0.0180	0.0006
Ethane (excluded from VOC total)	5.60	0.0162	0.0162	0.0006
Propane	17.60	0.0510	0.0510	0.0018
Iso-Butane	1.50	0.0044	0.0044	0.0002
N-Butane	27.10	0.0786	0.0786	0.0027
Iso-Pentane	1.50	0.0044	0.0044	0.0002
N-Pentane	14.60	0.0423	0.0423	0.0015
Heptane	9.20	0.0267	0.0267	0.0009
Octane	6.90	0.0200	0.0200	0.0007

		CALC	CULATED EMISSION RAT	ГES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Other NM/NE Hydrocarbons	1.80	0.0052	0.0052	0.0002
N-Hexane (TAP)	7.90	0.0229	0.0229	0.0008
Benzene (TAP)	0.10	0.0003	0.0003	0.0000
Total Weight Percent	100.00			
	Total TAP Emissions	0.02	0.02	0.00
	Total VOC Emissions	0.26	0.26	0.01
Total Non VOC & Non TAP-HC		0.03	0.03	0.00
	Total Emissions	0.29	0.29	0.01

Calculated Max. Gas Flowrate (SCFH) = 2.15

POINT SOURCE I.D. NUMBERS:LC-01				
EMISSION SOURCE DESCRIPTION:	Pneumatic Controllers			
DATA:				
Emission Source:	Natural Gas Supplied to Controllers & Transmitters			
Fuel Gas Specific Gravity: (based on an actual wet gas analysis)	0.6927			
Basis of Emission Estimates:	Manufacturers' Specifications or EPA Publication & Actual Wet Gas Analysis (See supporting documentation)			
Fuel Gas Analysis Report Number:	Southern Petroleum Laboratories Report No.: 2030-22040183-001A			

"INTERMITTENT-BLEED TYPE": (Consumption data based on standard type devices for similar applications, as provided by manufacturers' data from Norriseal and Kimray, Inc. or from an EPA publication entitled, "Lessons Learned from Natural Gas STAR Partners).

Service	Maximum Supply Pressure (PSIG)	Max. Throughput (BBLD)	Maximum Actuator Diameter (inches)	Equivalent Vessel Diameter (inches)	Minimum Dump Height (inches)	Estimated Stroke Rate (strokes/hr)	Estimated Gas Rate Required (SCFH)
Level Controllers (Process Separators)	30	62	9	24	8	7	1
Pressure Controllers (Process Vessels)	30	N/A	4"	N/A	N/A	1400	11
Pressure Controllers (Fired Equipment)	30	N/A	4"	N/A	N/A	600	5
		·		ТОТ	TAL GAS CON	SUMPTION:	17
Avg. Hourly Uncontrolled Supply Gas Emissions (lb/hr) = Hourly Gas Rate * Gas Density						= 0.90	
Max. Hourly Uncontrolled Supply Gas Emissions (lb/hr) = Hourly Gas Rate * Gas Density					= 0.90		
Annual Potential Uncor	ntrolled Supply G	as Emissions (T	PY)	= Hourly Ra	ate * 8760 hrs/yr	/2000 lbs/ton	= 3.94

SPECIATION FACTORS:

Speciation of the supply gas is based on the referenced analysis.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.1487	0.0103	0.0103	0.0453	
Carbon Dioxide (excluded from VOC total)	0.1675	0.0015	0.0015	0.0066	

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Methane (excluded from VOC total)	66.2849	0.5966	0.5966	2.6116	
Ethane (excluded from VOC total)	15.0336	0.1353	0.1353	0.5923	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0000	0.0000	0.0000	0.0000	
Propane	9.0628	0.0816	0.0816	0.3571	
Iso-Butane	1.1902	0.0107	0.0107	0.0469	
N-Butane	3.3173	0.0299	0.0299	0.1307	
Iso-Pentane	0.8633	0.0078	0.0078	0.0340	
N-Pentane	0.9645	0.0087	0.0087	0.0380	
Iso-Hexanes	1.1928	0.0107	0.0107	0.0470	
N-Hexane (TAP)	0.2763	0.0025	0.0025	0.0109	
Methylcyclopentane	0.0000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.0561	0.0005	0.0005	0.0022	
Cyclohexane	0.0000	0.0000	0.0000	0.0000	
Heptanes	0.1492	0.0013	0.0013	0.0059	
Methylcyclohexane	0.0000	0.0000	0.0000	0.0000	
Toluene (TAP)	0.0569	0.0005	0.0005	0.0022	
2,2,4-Trimethylpentane (TAP)	0.0661	0.0006	0.0006	0.0026	
Octanes Plus	0.1501	0.0014	0.0014	0.0059	
Ethylbenzene (TAP)	0.0032	0.0000	0.0000	0.0001	
Xylenes (TAP)	0.0166	0.0001	0.0001	0.0007	
TOTAL WEIGHT PERCENT:	100.0000				
TOTAL TAP EMISSIONS:		0.00	0.00	0.01	
TOTAL VOC H	0.16	0.16	0.68		
TOTAL Non-VOC & N	Non-TAP HC	0.73	0.73	3.20	
TOTA	AL Emissions	0.90	0.90	3.94	

POINT SOURCE I.D. NUMBERS:

FE-01

EMISSION SOURCE DESCRIPTION:

DATA:

Emission Source:

Fugitive Emissions

Fugitive from Light Liquid & Gas-Service Components U.S. EPA

Basis of Emission Estimates:

EMISSION CALCULATIONS:

					Calculated THC Emissions				
Count by Somio		THC Emissi	Hourly		Annual				
	Count - by Service		(kg/hr/source)		Emissions		Emissions		
			1			(lb/hr)		(TPY)	
	Lt. Liquid	Gas	Total	Lt. Liquid Service	Gas Service	LL	Gas	LL	Gas
Connectors	34	193	227	2.1E-04	2.0E-04	0.016	0.085	0.07	0.37
Flanges	34	0	34	1.1E-04	3.9E-04	0.008	0.000	0.04	0.00
Open Ends	0	8	8	1.4E-03	2.0E-03	0.000	0.035	0.00	0.15
Pumps ^(a)	0		0	1.3E-02	2.4E-03	0.000	N/A	0.00	N/A
Valves	19	59	78	2.5E-03	4.5E-03	0.105	0.585	0.46	2.56
"Others" ^(b)	1	0	1	7.5E-03	8.8E-03	0.017	0.000	0.07	0.00
TOTALS:	88	260	348			0.15	0.71	0.64	3.09

(a) Process Pumps Only

(b) "Others" equipment derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents

^(c) Refer to EPA Publication No. 453/R-95-017, "Protocol for Equipment Leak Emission Estimates", copy included in supporting documentation

LIGHT LIQUID-SERVICE SPECIATION FACTORS:

Speciation of the emission stream from components in light liquid service was taken from EPA Publication No.: 453/R-95-017; "Protocol for Equipment Leak Emission Estimates".

		Calculated Emission Rate			
Component	Weight Percent	Avg. Hourly (lb/hr)	Avg. Annual (TPY)		
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0	0.0000	0.0000		
NMEHC (expressed as VOC)	29.2	0.0424	0.1858		
Benzene (TAP)	0.027	0.0000	0.0002		
Ethylbenzene (TAP)	0.0170	0.0000	0.0001		

Toluene (TAP)	0.075	0.0001	0.0005
Xylenes (m,p,o) (TAP)	0.036	0.0001	0.0002
	TOTAL TAP EMISSIONS:	0.00	0.00
	TOTAL VOC EMISSIONS:	0.04	0.19

GAS SERVICE SPECIATION FACTORS:

Speciation of the emission stream from components in gas service is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-22040183-001A in supporting documentation.

		Calculated H	Emission Rate
Component	Weight Percent	Avg. Hourly (lb/hr)	Avg. Annua (TPY)
Nitrogen (excluded from VOC total)	1.1487	0.0081	0.0355
Carbon Dioxide (excluded from VOC total)	0.1675	0.0012	0.0052
Methane (excluded from VOC total)	66.2849	0.4678	2.0489
Ethane (excluded from VOC total)	15.0336	0.1061	0.4647
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0000	0.0000	0.0000
Propane	9.0628	0.0640	0.2801
Iso-Butane	1.1902	0.0084	0.0368
N-Butane	3.3173	0.0234	0.1025
Iso-Pentane	0.8633	0.0061	0.0267
N-Pentane	0.9645	0.0068	0.0298
Iso-Hexanes	1.1928	0.0084	0.0369
N-Hexane (TAP)	0.2763	0.0019	0.0085
Methylcyclopentane	0.0000	0.0000	0.0000
Benzene (TAP)	0.0561	0.0004	0.0017
Cyclohexane	0.0000	0.0000	0.0000
Heptanes	0.1492	0.0011	0.0046
Methylcyclohexane	0.0000	0.0000	0.0000
Toluene (TAP)	0.0569	0.0004	0.0018
2,2,4-Trimethylpentane (TAP)	0.0661	0.0005	0.0020
Octanes Plus	0.1501	0.0011	0.0046
Ethylbenzene (TAP)	0.0032	0.0000	0.0001
Xylenes (TAP)	0.0166	0.0001	0.0005
TOTAL WEIGHT PERCENT:	100.0000		
	TOTAL TAP EMISSIONS:	0.00	0.01
	TOTAL VOC EMISSIONS:	0.12	0.54
TOT	AL Non-VOC & Non-TAP HC:	0.57	2.51
	TOTAL Emissions:	0.71	3.09

Emission Calculations

Emission calculations shown below are presented for informational purposes only as well gas is routed to the control flare (EPN: FL-01) for combustion.

POINT SOURCE I.D. NUMBER:	12-22-WG			
EMISSION SOURCE DESCRIPTION:	Well Gas			
DATA:				
Emission Source:	Well Gas			
Gas Specific Gravity:	0.6927			
Maximum Gas Rate (MSCFD): (conservative estimate provided by operator)	175			
Basis of Emission Estimates:	Conservative Estimate Analysis (Refer to sup			al Wet Gas
Well Gas Analysis Report Number:	Southern Petroleum	Laboratories Rep	oort No.: 2030-2	22040183-001A
Avg. Hourly Uncontrolled Gas Rate (SCF/Hr)	= Max. Gas Rate * 10	000/24		= 7291.67
Avg. Hourly Uncontrolled Total Emissions (lb/hr)	= Gas Gravity * Dens	ity of Air * Hourly	Gas Rate	= 385.89
Max. Hourly Uncontrolled Total Emissions (lb/hr)	= Gas Gravity * Dens	ity of Air * Hourly	Gas Rate	= 385.89
Annual Potential Uncontrolled Total Emissions (TPY)	= Hourly * 8760/2000)		= 1690.20
SPECIATION FACTORS: Speciation of the well gas is based on the referenced analysi EMISSIONS SUMMARY:	s.			
EMISSIONS SUMIMARI:				
		CALCU	JLATED EMISS	SION RATES
POLLUTANT:	Weight Percent	CALCU Average Hourly (lb/hr)	JLATED EMISS Maximum Hourly (lb/hr)	SION RATES Annual (TPY)
	Weight Percent	Average	Maximum	
POLLUTANT:		Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
POLLUTANT: Nitrogen (excluded from VOC total)	1.1487	Average Hourly (lb/hr) 4.4325	Maximum Hourly (lb/hr) 4.4325	Annual (TPY) 19.4145
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total)	1.1487 0.1675	Average Hourly (lb/hr) 4.4325 0.6462	Maximum Hourly (lb/hr) 4.4325 0.6462	Annual (TPY) 19.4145 2.8304
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total)	1.1487 0.1675 66.2849	Average Hourly (lb/hr) 4.4325 0.6462 255.7880	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880	Annual (TPY) 19.4145 2.8304 1120.3460
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total)	1.1487 0.1675 66.2849 15.0336	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total)	1.1487 0.1675 66.2849 15.0336 0.0000	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total) Propane	1.1487 0.1675 66.2849 15.0336 0.0000 9.0628	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000 153.1786
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total) Propane Iso-Butane	1.1487 0.1675 66.2849 15.0336 0.0000 9.0628 1.1902	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000 153.1786 20.1163 56.0698 14.5918
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total) Propane Iso-Butane N-Butane	1.1487 0.1675 66.2849 15.0336 0.0000 9.0628 1.1902 3.3173	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000 153.1786 20.1163 56.0698
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total) Propane Iso-Butane N-Butane Iso-Pentane N-Pentane Iso-Hexane	1.1487 0.1675 66.2849 15.0336 0.0000 9.0628 1.1902 3.3173 0.8633 0.9645 1.1928	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315 3.7218 4.6030	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000 153.1786 20.1163 56.0698 14.5918 16.3013 20.1612
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total) Propane Iso-Butane N-Butane Iso-Pentane Iso-Hexane N-Hexane (TAP)	1.1487 0.1675 66.2849 15.0336 0.0000 9.0628 1.1902 3.3173 0.8633 0.9645 1.1928 0.2763	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315 3.7218 4.6030 1.0662	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315 3.7218 4.6030 1.0662	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000 153.1786 20.1163 56.0698 14.5918 16.3013 20.1612 4.6701
POLLUTANT: Nitrogen (excluded from VOC total) Carbon Dioxide (excluded from VOC total) Methane (excluded from VOC total) Ethane (excluded from VOC total) Hydrogen Sulfide (excluded from VOC total) Propane Iso-Butane N-Butane Iso-Pentane N-Pentane Iso-Hexane	1.1487 0.1675 66.2849 15.0336 0.0000 9.0628 1.1902 3.3173 0.8633 0.9645 1.1928	Average Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315 3.7218 4.6030	Maximum Hourly (lb/hr) 4.4325 0.6462 255.7880 58.0135 0.0000 34.9724 4.5928 12.8014 3.3315 3.7218 4.6030	Annual (TPY) 19.4145 2.8304 1120.3460 254.0977 0.0000 153.1786 20.1163 56.0698 14.5918 16.3013 20.1612

Cyclohexane	0.0000	0.0000	0.0000	0.0000
Heptanes	0.1492	0.5759	0.5759	2.5224
Methylcyclohexane	0.0000	0.0000	0.0000	0.0000
Toluene (TAP)	0.0569	0.2197	0.2197	0.9622
2,2,4-Trimethylpentane (TAP)	0.0661	0.2551	0.2551	1.1175
Octanes Plus	0.1501	0.5792	0.5792	2.5367
Ethylbenzene (TAP)	0.0032	0.0124	0.0124	0.0545
Xylenes (TAP)	0.0166	0.0639	0.0639	0.2801
Nonanes	0.0000	0.0000	0.0000	0.0000
Decanes Plus	0.0000	0.0000	0.0000	0.0000
Total Weight Percent:	100.0000			
	Total TAP Emissions	1.83	1.83	8.03
	Total VOC Emissions	67.01	67.01	293.51
Total No	on VOC & Non TAP-HC	313.80	313.80	1374.44
	Total Emissions	385.89	385.89	1690.20
Uncontrolled VOC Emission Total (TPY)		Well Gas		= 293.51

Emission Calculations

Emission calculations shown below are presented for informational purposes only as off-gas from the heater treater is routed to the control flare (EPN: FL-01) for combustion.

POINT SOURCE I.D. NUMBER:	13-22-HT-FG
EMISSION SOURCE DESCRIPTION:	Heater Treater-Flash Gas
DATA:	
Emission Source:	Heater Treater Flash Gas
Flash Gas Specific Gravity:	1.0331
Maximum Oil Throughput: (BBLD)	12
Basis of Emission Estimates:	Comparable Analysis/Vasquez-Beggs Correlation
Flash Gas Analysis Report Number:	PENCOR Report No.: 32905-5007058311

Estimates for gas volumes and composition associated with this stage of the process were derived from a laboratory test of an oil sample collected at another site under similar conditions (pressure & temperature), refer to supporting documentation. This representative analysis is expected to yield a comparable VOC total but individual component values may vary from site to site. The following table shows the field conditions compared to the results from the laboratory test:

API Oil Gravity @ 60°F	Process C	Process Conditions		
Ari Oli Glavity @ 00 F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)	
Actual Facility Conditions:				
41	60	80		
	30	120	Unknown	
Laboratory Conditions:				
39.1	48	70		
39.1	20	125	9	
	Pro	orated GOR Estimate:	9.84	

Since an oil flash analysis has not been performed on an actual sample collected from this particular producing zone, the "Gas to Oil" (GOR) ratio estimated above will be compared with a value derived from the Vasquez-Beggs Correlation presented in the following table. For purposes of permitting, the higher of the two GOR values will be used within these emission estimates.

	VASQUEZ-	BEGGS CC	ORRELAT	TION		
	Stock Tank Oil API	Gravity (API) =	41		
I N	Flash Gas Specific	Gravity (SG _i) =	1.0331		
Р	Flash Gas Pressure Dro	$pp(psig)(P_i)$	=	30		
U T	Pressure Vessel Temperc	$ture (°F) (T_i$) =	80		
	Atmospheric Pressure $(P_{atm}) =$			14.7		
	Dissolved Gas Gravity @ 100 (SG _i)*[1.0+0.00005912*API*T _i *Log	1 0 1 10		0.9511		
		Co	nstants			
		°API G	ravity			
	$^{\circ}\text{API} \rightarrow$	< 30	≥ 30	Constants Used based on API Gravity		
	C1	0.0362	0.0178	0.0178		
	C2	1.0937	1.187	1.187		
	C3	25.724	23.931	23.931		
GOR =	$(C1) * (SG_x) * ((P_i + P_{atm})^{C2}) * e^{[(C3)(API)/(T + i)]}$	-460)] =	9.48	scf/bbl		

refer to "Correlations for Fluid Physical Property Prediction" Journal of Petroleum Technology, Society of Petroleum Engineers, 1980

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	=	Oil Rate * GOR	=	4.92
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	0.39
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	0.39
Annual Potential Uncontrolled Flash Emissions (TPY)	=	Hourly * 8760/2000	=	1.71

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from the referenced laboratory results; refer to supporting documentation.

EMISSIONS SUMMARY:

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.663	0.0026	0.0026	0.0113	
Carbon Dioxide (excluded from VOC total)	0.886	0.0034	0.0034	0.0151	
Methane (excluded from VOC total)	31.103	0.1208	0.1208	0.5313	
Ethane (excluded from VOC total)	13.599	0.0528	0.0528	0.2323	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	17.574	0.0682	0.0682	0.3002	
Iso-Butane	7.411	0.0288	0.0288	0.1266	
N-Butane	10.840	0.0421	0.0421	0.1852	
Iso-Pentane	5.195	0.0202	0.0202	0.0887	
N-Pentane	4.017	0.0156	0.0156	0.0686	
Iso-Hexane	2.715	0.0105	0.0105	0.0464	
N-Hexane (TAP)	1.562	0.0061	0.0061	0.0267	
Methylcyclopentane	0.650	0.0025	0.0025	0.0111	

0.120	0.0005	0.000 .	0.0022
0.130	0.0005	0.0005	0.0022
0.319	0.0012	0.0012	0.0054
0.888	0.0034	0.0034	0.0152
0.268	0.0010	0.0010	0.0046
0.212	0.0008	0.0008	0.0036
0.124	0.0005	0.0005	0.0021
0.254	0.0010	0.0010	0.0043
0.005	0.0000	0.0000	0.0001
0.022	0.0001	0.0001	0.0004
0.092	0.0004	0.0004	0.0016
1.471	0.0057	0.0057	0.0251
100.000			
Total TAP Emissions	0.01	0.01	0.04
Total VOC Emissions	0.21	0.21	0.92
on VOC & Non TAP-HC	0.17	0.17	0.76
Total Emissions	0.39	0.39	1.71
	0.888 0.268 0.212 0.124 0.254 0.005 0.022 0.092 1.471 100.000 Total TAP Emissions Total VOC Emissions	0.319 0.0012 0.888 0.0034 0.268 0.0010 0.212 0.0008 0.124 0.0005 0.254 0.0010 0.022 0.0001 0.022 0.0001 0.092 0.0004 1.471 0.0057 100.000	0.319 0.0012 0.0012 0.888 0.0034 0.0034 0.268 0.0010 0.0010 0.212 0.0008 0.0008 0.124 0.0005 0.0005 0.254 0.0010 0.0010 0.022 0.0001 0.0001 0.092 0.0004 0.0004 1.471 0.0057 0.0057 100.000

Uncontrolled VOC Emission Total (TPY)

Heater Treater Flash Gas

0.92

=

This is not an official certificate of good standing.

Name History		
Name		Name Type
KAISER-FRANCIS OIL COMPANY		Legal
Business Information		
Business Type:	Profit Corporation	
Business ID:	507505	
Status:	Good Standing	
Effective Date:	01/18/1983	
State of Incorporation:	DE	
Principal Office Address:	6733 S. Yale Avenue Tulsa, OK 74136	
Registered Agent		
Name		
C T CORPORATION SYSTEM 645 LAKELAND EAST DR STE 101 FLOWOOD, MS 39232		
Officers & Directors		
Name	Title	
Robert Waldo 6733 S. Yale Avenue Tulsa, OK 74136	President	
Don P Millican 6733 S. Yale Avenue Tulsa, OK 74136	Director, Vice President	
Ken Kinnear 6733 S. Yale Avenue Tulsa, OK 74136	Treasurer	
Frederic Dorwart 124 E. Fourth Street Tulsa, OK 74103	Secretary	

Certificate of Analysis

Number: 2030-22040183-001A

Apr. 20, 2022

Mike Raines Kaiser Francis 5733 S Yale Avenue Tulsa, OK 74136

Field:GillilandStation Name: 34 1-HCylinder No:2030-1767Analyzed:04/20/2022 09:31:25 by TAM

Sampled By:CC-KaiserSample Of:GasSpotSample Date:03/30/2022Sample Conditions:Method:GPA-2261

Analytical Data						
Components	Mol. %	Wt. %	GPM at 15.025 psia			
Nitrogen	0.819	1.147		GPM TOTAL C2+	4.783	
Carbon Dioxide	0.076	0.167		GPM TOTAL C3+	2.051	
Methane	82.526	66.182		GPM TOTAL iC5+	0.389	
Ethane	9.986	15.010	2.732			
Propane	4.105	9.049	1.157			
Iso-Butane	0.409	1.188	0.137			
n-Butane	1.140	3.312	0.368			
Iso-Pentane	0.239	0.862	0.089			
n-Pentane	0.267	0.963	0.099			
Hexanes	0.191	0.823	0.080			
Heptanes Plus	0.242	1.297	0.121			
	100.000	100.000	4.783			
Physical Properties	5		Total	C7+		
Relative Density Rea	al Gas		0.6927	3.7019		
Calculated Molecula	r Weight		20.00	107.22		
Compressibility Fact	or		0.9967			
GPA 2172 Calculat	ion:					
Calculated Gross E	BTU per ft ³ @	2 15.025 ps	ia & 60°F			
Real Gas Dry BTU			1239	6007		
Water Sat. Gas Base	e BTU		1218	5905		

Patter S. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Southern Petroleum Laboratories Report No.: 2030-22040183-001A

COMPONENT	mole %	MOLE FRACTION	MW	fuel weight	WT frac	Wt %	dh*	Heat Value (BTU/SCF)	Carbon Weight %	с	-H ratio
Nitrogen	0.8190	0.008	28.0134	0.23	0.0115	1.1487	0	0.00	0.0000	0	0
Carbon Dioxide	0.0760	0.001	44.01	0.03	0.0017	0.1675	0	0.00	0.0091	0	0
Methane	82.5260	0.825	16.043	13.24	0.6628	66.2849	1010	833.51	9.9033	0.25	0.206315
Ethane	9.9860	0.100	30.07	3.00	0.1503	15.0336	1770	176.71	2.3962	0.33333	0.033286334
Hydrogen Sulfide	0.0000	0.000	34.08	0.00	0.0000	0.0000	637.1	0.00	0.0000	0	0
Propane	4.1050	0.041	44.097	1.81	0.0906	9.0628	2516	103.29	1.4780	0.375	0.01539375
I-Butane	0.4090	0.004	58.123	0.24	0.0119	1.1902	3252	13.30	0.1963	0.4	0.001636
N-Butane	1.1400	0.011	58.123	0.66	0.0332	3.3173	3262	37.19	0.5472	0.4	0.00456
I-Pentane	0.2390	0.002	72.15	0.17	0.0086	0.8633	4001	9.56	0.1434	0.41667	0.000995841
N-Pentane	0.2670	0.003	72.15	0.19	0.0096	0.9645	4009	10.70	0.1602	0.41667	0.001112509
Other hexanes	0.2765	0.003	86.177	0.24	0.0119	1.1928	4750	13.13	0.1991	0.42857	0.00118487
N-hexane	0.0640	0.001	86.177	0.06	0.0028	0.2763	4756	3.05	0.0461	0.42857	0.000274459
benzene	0.0143	0.000	78.114	0.01	0.0006	0.0561	3742	0.54	0.0103	1	0.000143323
heptane	0.0297	0.000	100.204	0.03	0.0015	0.1492	5503	1.64	0.0250	0.4375	0.000130144
toluene	0.0123	0.000	92.141	0.01	0.0006	0.0569	4475	0.55	0.0104	0.875	0.000107979
iso-octane	0.0116	0.000	114.231	0.01	0.0007	0.0661	6232	0.72	0.0111	0.4444	5.13775E-05
octanes+	0.0208	0.000	144.231	0.03	0.0015	0.1501	6500	1.35	0.0249	0.4444	9.23641E-05
ethylbenzene	0.0006	0.000	106.167	0.00	0.0000	0.0032	5222	0.03	0.0006	0.8	4.8496E-06
xylene	0.0031	0.000	106.167	0.00	0.0002	0.0166	5209	0.16	0.0030	0.8	2.49408E-05
TOTALS	100.0000	1.000		19.97	1.0000	100.0000		1205	15.1642		0.265313741
hexanes+	0.4330			sg VOC wt% Toxic wt%	0.6888 17.3654 0.4752		Car	rbon wt%	75.92032		

Combustor Type	Ν	VO _x ^b	CO)
(MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	А	84	В
Uncontrolled (Post-NSPS) ^c	190	А	84	В
Controlled - Low NO _x burners	140	А	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	С	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	А	24	С
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NOx) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.
 ^b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

^c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	А
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
$\mathrm{SO}_2^{\mathrm{d}}$	0.6	А
TOC	11	В
Methane	2.3	В
VOC	5.5	С

TABLE 1.4-2.EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE
GASES FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from $lb/10^6$ scf to $kg/10^6$ m³, multiply by 16. To convert from $lb/10^6$ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO₂. $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

^d Based on 100% conversion of fuel sulfur to SO₂. Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

Emission Factor CAS No. Pollutant $(lb/10^{6} \text{ scf})$ Emission Factor Rating 2-Methylnaphthalene^{b, c} 91-57-6 2.4E-05 D 3-Methylchloranthrene^{b, c} 56-49-5 Е <1.8E-06 7.12-E <1.6E-05 Dimethylbenz(a)anthracene^{b,c} Acenaphthene^{b,c} 83-32-9 <1.8E-06 E Acenaphthylene^{b,c} 203-96-8 Е <1.8E-06 Anthracene^{b,c} 120-12-7 Е <2.4E-06 56-55-3 Benz(a)anthracene^{b,c} Е <1.8E-06 Benzene^b 71-43-2 2.1E-03 В 50-32-8 Benzo(a)pyrene^{b,c} Е <1.2E-06 Benzo(b)fluoranthene^{b,c} 205-99-2 Е <1.8E-06 Benzo(g,h,i)perylene^{b,c} Е 191-24-2 <1.2E-06 Benzo(k)fluoranthene^{b,c} 207-08-9 Е <1.8E-06 106-97-8 Butane 2.1E+00 Ε Chrysene^{b,c} 218-01-9 Ε <1.8E-06 Dibenzo(a,h)anthracene^{b,c} 53-70-3 Е <1.2E-06 Dichlorobenzene^b Е 25321-22-1.2E-03 6 74-84-0 Ethane 3.1E+00 E Fluoranthene^{b,c} 206-44-0 3.0E-06 E 86-73-7 Fluorene^{b,c} 2.8E-06 E 50-00-0 Formaldehyde^b 7.5E-02 В Hexane^b 110-54-3 1.8E+00E 193-39-5 Indeno(1,2,3-cd)pyrene^{b,c} E <1.8E-06 Naphthalene^b 91-20-3 Е 6.1E-04 109-66-0 Pentane Е 2.6E+00 Phenanathrene^{b,c} 85-01-8 1.7E-05 D 74-98-6 Propane 1.6E+00 Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION^a

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	С

NATURAL GAS COMBUSTION (Continued)

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceeded with a less-than symbol are based on method detection limits.

^b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	С
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	С
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	Е

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceeded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.
^b Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

References For Section 1.4

- 1. *Exhaust Gases From Combustion And Industrial Processes*, EPA Contract No. EHSD 71-36, Engineering Science, Inc., Washington, DC, October 1971.
- 2. *Chemical Engineers' Handbook, Fourth Edition*, J. H. Perry, Editor, McGraw-Hill Book Company, New York, NY, 1963.
- 3. *Background Information Document For Industrial Boilers*, EPA-450/3-82-006a, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1982.
- 4. *Background Information Document For Small Steam Generating Units*, EPA-450/3-87-000, U. S . Environmental Protection Agency, Research Triangle Park, NC, 1987.
- 5. J. L. Muhlbaier, "Particulate and Gaseous Emissions From Natural Gas Furnaces and Water Heaters", *Journal Of The Air Pollution Control Association*, December 1981.
- 6. L. P. Nelson, *et al.*, *Global Combustion Sources Of Nitrous Oxide Emissions*, Research Project 2333-4 Interim Report, Sacramento: Radian Corporation, 1991.
- 7. R. L. Peer, *et al.*, *Characterization Of Nitrous Oxide Emission Sources*, Prepared for the U. S. EPA Contract 68-D1-0031, Research Triangle Park, NC: Radian Corporation, 1995.
- 8. S. D. Piccot, *et al.*, *Emissions and Cost Estimates For Globally Significant Anthropogenic Combustion Sources Of NO_x*, *N*₂*O*, *CH*₄, *CO*, *and CO*₂, EPA Contract No. 68-02-4288, Research Triangle Park, NC: Radian Corporation, 1990.
- 9. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- J. P. Kesselring and W. V. Krill, "A Low-NO_x Burner For Gas-Fired Firetube Boilers", *Proceedings: 1985 Symposium On Stationary Combustion NO_x Control, Volume 2*, EPRI CS-4360, Electric Power Research Institute, Palo Alto, CA, January 1986.
- 11. *Emission Factor Documentation for AP-42 Section 1.4—Natural Gas Combustion*, Technical Support Division, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1997.
- 12. Alternate Control Techniques Document NO_x Emissions from Utility Boilers, EPA-453/R-94-023, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1994.

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diese (SCC 2-02-001-		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

	Affecte	ed Parameter
Technology	Increase	Decrease
Fuel modifications		
Sulfur content increase	PM, wear	
Aromatic content increase	PM, NO _x	
Cetane number		PM, NO _x
10% and 90% boiling point		PM
Fuel additives		PM, NO _x
Water/Fuel emulsions		NO _x
Engine modifications		
Injection timing retard	PM, BSFC	NO _x , power
Fuel injection pressure	PM, NO _x	
Injection rate control		NO _x , PM
Rapid spill nozzles		PM
Electronic timing & metering		NO _x , PM
Injector nozzle geometry		PM
Combustion chamber modifications		NO _x , PM
Turbocharging	PM, power	NO _x
Charge cooling		NO _x
Exhaust gas recirculation	PM, power, wear	NO _x
Oil consumption control		PM, wear
Exhaust after-treatment		
Particulate traps		PM
Selective catalytic reduction		NO _x
Oxidation catalysts		TOC, CO, PM

Table 3.3-3. EFFECT OF VARIOUS EMISSION CONTROL TECHNOLOGIES ON DIESEL ENGINES^a

^a Reference 8. PM = particulate matter. BSFC = brake-specific fuel consumption.

References For Section 3.3

- 1. H. I. Lips, et al., Environmental Assessment Of Combustion Modification Controls For Stationary Internal Combustion Engines, EPA-600/7-81-127, U. S. Environmental Protection Agency, Cincinnati, OH, July 1981.
- 2. Standards Support And Environmental Impact Statement, Volume 1: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1979.
- 3. M. Hoggan, et al., Air Quality Trends In California's South Coast And Southeast Desert Air Basins, 1976-1990, Air Quality Management Plan, Appendix II-B, South Coast Air Quality Management District, July 1991.
- R. B. Snyder, Alternative Control Techniques Document .. NO_x Emissions From Stationary Reciprocating Internal Combustion Engines, EPA-453/R-93-032, U. S. Environmental Protection Agency, Research Triangle Park, July 1993.
- 5. C. T. Hare and K. J. Springer, *Exhaust Emissions From Uncontrolled Vehicles And Related Equipment Using Internal Combustion Engines, Part 5: Farm, Construction, And Industrial Engines*, APTD-1494, U. S. Environmental Protection Agency, Research Triangle Park, NC, October 1973.
- 6. *Pooled Source Emission Test Report: Oil And Gas Production Combustion Sources, Fresno And Ventura Counties, California*, ENSR 7230-007-700, Western States Petroleum Association, Bakersfield, CA, December 1990.
- 7. W. E. Osborn and M. D. McDannel, *Emissions Of Air Toxic Species: Test Conducted Under AB2588 For The Western States Petroleum Association*, CR 72600-2061, Western States Petroleum Association, Glendale, CA, May 1990.
- 8. Technical Feasibility Of Reducing NO_x And Particulate Emissions From Heavy-duty Engines, CARB Contract A132-085, California Air Resources Board, Sacramento, CA, March 1992.
- 9. G. Marland and R. M. Rotty, *Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1951-1981*, DOE/NBB-0036 TR-003, Carbon Dioxide Research Division, Office of Energy Research, U. S. Department of Energy, Oak Ridge, TN, 1983.
- 10. A. Rosland, *Greenhouse Gas Emissions in Norway: Inventories and Estimation Methods*, Oslo: Ministry of Environment, 1993.
- 11. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- 12. G. Marland and R. M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1950-1982, Tellus 36B:232-261, 1984.
- 13. Inventory Of U. S. Greenhouse Gas Emissions And Sinks: 1990-1991, EPA-230-R-96-006, U. S. Environmental Protection Agency, Washington, DC, November 1995.
- 14. *IPCC Guidelines For National Greenhouse Gas Inventories Workbook*, Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development, Paris, France, 1995.

 Tank ID
 OST-01 through OST-03

 Tank Description
 400 BBL Oil Storage Tank-Common Vent

 Company Name
 Kaiser-Francis Oil Company

Major City for Meterological Data	Tupelo, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	Crude Oil
RVP*	6.27
API gravity*	41.0
°F basis for gv*	60.0
bubble point psia	
API gravity at 60F	41.0
API gravity at 100F	44.5
Working Loss Product Factor (K _P)	0.75

working loss turnover factor K_N

1.000

*sales oil data determines RVP per API pub 4683

Gray - Medium	Tank Shell Color/Shade	Vertical	Tank Orientation
average	Tank Shell Paint Condition	12.00	Tank Diameter (D ft)
Gray - Medium	Tank Roof Color/Shade	20.00	Vertical Height/Horizontal Length (H s ft)
average	Tank Roof Paint Condition	0.38	Roof Height (H _R ft)
vertical tank with cone roo	Roof Type	19.00	Max Liquid Height (H _{Lx} ft)
no insulation	Tank Insulation	9.50	Avg Liquid Height (H _L ft)
no	Tank Underground?		Breather Vent Pressure Setting (P _{BP} psig)
1,460.00	Annual Throughput (Q bbl/year)		Breather Vent Vacuum Setting (P _{BV} psig)
3.81	Annual Turnovers, N	0.0	actual tank pressure (P , psig)
8,760	Annual Hours	0.71	Shell Paint Solar Absorptance (S_A)
2,148.85	tank max liquid volume (V _{LX} ft ³)	0.71	Roof Paint Solar Absorptance (R_A)
10.625	vapor space outage (H _{vo} ft)	0.00	breather vent pressure range (ΔP_B psi)
1,201.66	vapor space volume (V_{v} ft ³)	0.1250	roof outage (H _{RO} ft)

Antoine constants (log $_{10}$, mmHg, °C)

component	mole%	MW	lb/mole	wt%	А	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	0.000		0.000	0.000			

Tank contents (if not selected from Table 7.1-2):

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T _{AX} °F)	51.30	55.80	64.30	73.00	80.60	87.40	90.10	90.10	84.20	74.20	62.90	52.80	72.20
hourly average minimum ambient temperature (T _{AN} °F)	33.20	35.90	43.00	51.00	60.20	68.10	71.50	70.60	63.40	51.60	42.00	34.80	52.10
daily total solar insolation factor (I btu/ft ² day)	730	964	1309	1682	1912	2026	1990	1849	1536	1201	832	648	1390
daily average ambient temperature (T _{AA} °F)	42.25	45.85	53.65	62.00	70.40	77.75	80.80	80.35	73.80	62.90	52.45	43.80	62.15
liquid bulk temperature (T _B °F)	43.80	47.90	56.44	65.58	74.47	82.07	85.04	84.29	77.07	65.46	54.22	45.18	65.11
average vapor temperature (T _V °F)	46.45	51.39	61.17	71.67	81.39	89.40	92.24	90.98	82.63	69.80	57.23	47.52	70.14
daily ambient temperature range (ΔT _A °R)	18.10	19.90	21.30	22.00	20.40	19.30	18.60	19.50	20.80	22.60	20.90	18.00	20.10
daily vapor temperature range (ΔT _v °R)	23.44	27.62	33.50	39.28	41.43	42.28	41.28	39.91	36.37	32.87	26.95	22.47	33.81
daily average liquid surface temperature (T _{LA} °F)	45.13	49.65	58.81	68.63	77.93	85.73	88.64	87.63	79.85	67.63	55.73	46.35	67.63
daily maximum liquid surface temperature (T _{LX} °F)	50.99	56.55	67.18	78.45	88.29	96.30	98.96	97.61	88.94	75.85	62.47	51.97	76.08
daily minimum liquid surface temperature (T _{LN} °F)	39.26	42.74	50.43	58.80	67.57	75.16	78.32	77.66	70.76	59.41	48.99	40.74	59.17
vapor pressure at daily avg liq surface temp T _{LA} (P _{VA} psia)	2.950	3.223	3.837	4.595	5.418	6.194	6.504	6.396	5.602	4.513	3.621	3.022	4.513
vapor pressure at daily max liq surface temp T_{LX} (P _{vx} psia)	3.307	3.678	4.477	5.467	6.466	7.381	7.705	7.539	6.537	5.225	4.107	3.370	5.246
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	2.624	2.814	3.272	3.837	4.509	5.162	5.455	5.392	4.774	3.881	3.182	2.703	3.863
daily vapor pressure range (ΔP_V) 0).6832	0.8640	1.2045	1.6301	1.9577	2.2187	2.2503	2.1468	1.7632	1.3440	0.9250	0.6674	1.3822
vapor space expansion factor (K _E) 0	0.1054	0.1306	0.1772	0.2383	0.2918	0.3435	0.3554	0.3366	0.2647	0.1964	0.1370	0.1024	0.2020
vapor molecular weight (M _v lb/lbmole)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	696	629	696	674	696	674	696	696	674	696	674	696	8,196
monthly turnovers (N/month) with avg = total annual	0.32	0.29	0.32	0.31	0.32	0.31	0.32	0.32	0.31	0.32	0.31	0.32	3.81
vented vapor saturation factor (K _s) 0).3758	0.3553	0.3164	0.2787	0.2468	0.2228	0.2145	0.2173	0.2407	0.2824	0.3291	0.3701	0.2824
vent setting correction factor (K _B) 1	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³) 0	0.0272	0.0294	0.0343	0.0403	0.0467	0.0526	0.0549	0.0541	0.0481	0.0397	0.0326	0.0278	0.0397
standing storage losses (L _s lb/month & avg is lb/yr)	57.71	56.39	72.94	82.86	99.15	108.08	116.68	115.00	98.97	84.40	67.12	58.99	1018.29
working losses (L _w lb/month & avg is lb/yr)	14.18	13.86	17.92	20.36	24.36	26.56	28.67	28.25	24.32	20.74	16.49	14.49	250.20
total losses (L _T lb/month & avg is lb/yr)	71.89	70.25	90.86	103.22	123.51	134.64	145.35	143.25	123.29	105.13	83.61	73.49	1268.49
max hourly Q in bbl/hour	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	
max hourly working loss at P_{VX} & Q/hr & K _N =1 (L _W lb/hr)	0.019	0.021	0.024	0.028	0.033	0.037	0.039	0.038	0.034	0.028	0.023	0.019	
breathing/standing loss (L _s lb/hr)	0.078	0.084	0.098	0.134	0.168	0.201	0.210	0.198	0.154	0.113	0.093	0.079	
max hourly total loss (L _T lb/hr)	0.097	0.105	0.122	0.162	0.201	0.238	0.248	0.236	0.187	0.141	0.116	0.099	

L _s sum months	L _w sum months	L _T sum months
---------------------------	---------------------------	---------------------------

250.20 1018.29 1268.49 The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions	Sumn	nary:			
			 1-		

ns	Summary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.113	0.210	992.960	
	Working Loss L _w	0.028	0.039	243.973	max hourly total loss may not add up to L_{s} + L_{w} as their max values may be different months
	Total Loss L _T	0.141	0.248	1,236.933	


```
VOC Profile Speciation Report
```

Profile Name : Fixed Roof Tank - Crude Oil Production Profile Number : 0296 Data Quality : C Control Device : Uncontrolled Reference(s) : 59, 72 Data Source : Engineering evaluation of test data and literature data

.

SCC Assignments: 40301010, 40301011, 40301012, 40301109

Saroad	CAS Number	Name	Spec_MW	Spec_WT	Peal
43115		C-7 CYCLOPARAFFINS	98.19	1.30	
43116		C-8 CYCLOPARAFFINS	112.23	0.50	
43122		ISOMERS OF PENTANE	72.15	1.50	
43201	74-82-8	METHANE	16.04	6.20	
43202	74-84-0	ETHANE	30.07	5.60	
43204	74-98-6	PROPANE	44.09	17.60	
43212	106-97-8	N-BUTANE	58.12	27.10	
43214	75-28-5	I SO-BUTANE	58.12	1.50	
43220	109-66-0	N-PENTANE	72.15	14.60	
43231	110-54-3	HEXANE	86.17	7.90	
43232	142-82-5	HEPTANE	100.20	9.20	
43233	111-65-9	OCTANE	114.23	6.90	
45201	71-43-2	BENZENE	78.11	0.10	
TOTAL				100.00	

.

•

Certificate of Analysis

Number: 2030-18060114-002A

June 18, 2018

James Shumaker Goodrich Petroleum 801 Louisiana Suite 700 Houston, TX 77002

Field: WILKINSON Station Name: CMR FOSTER CREEK 31-22 H1 Station Number:2377 Sample Point: HEATER TREATER Sampled By:CF-SPLSample Of:LiquidSpotSample Date:06/08/2018Sample Conditions: 23 psig, @ 118 °FCylinder No:2030-00895

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Color Visual	Proprietary	Crude		EG	06/13/2018
API Gravity @ 60° F	ASTM D-5002	39.645	0	EG	06/13/2018
Specific Gravity @ 60/60° F	ASTM D-5002	0.8268	_	EG	06/13/2018
Density @ 60° F	ASTM D-5002	0.8260	g/ml	EG	06/13/2018
Shrinkage Factor	Proprietary	0.9935	U U	EG	06/13/2018
Flash Factor	Proprietary	13.2582 Cu	. Ft./S.T. Bbl	EG	06/13/2018

Patti L. Petro

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

4790 NE Evangeline Thruway Carencro, LA 70520 Office: 337-896-3055 Fax: 337-896-3077

OIL AND GAS MEASUREMENT AND ANALCERTIFICATE OF ANALYSIS 18060114-002A

Customer: Attn:	Goodrich Petroleum James Shumaker	Report Date:	06/18/18
	801 Louisiana Suite 700	PO / Ref. No.:	
	Houston, TX 77002		
Company:	Goodrich Petroleum	Sample Of:	Flash Gas
Field:	Wilkinson	Sample Date/Time:	6/8/2018
Well:	CMR Foster Creek 31-22 H1	Sample Psig & Temp:	23 psi @ 118 °F
		Sampled By:	CF-SPL
Sample Point:	2237 Heater Treater	Cylinder # :	2030-00895
Comments:	EOS Flash Gas Composition		

Staged Flash from 23 psi @ 118°F to 0 psi @ 60°F

MOL % WEIGHT % GPM's @ 15.025 NITROGEN METHANE 52.984 29.072 CO2 6.491 9.770 ETHANE 17.295 17.787 6.631 PROPANE 12.571 18.960 4.679 **I-BUTANE** 1.598 3.177 0.501 N-BUTANE 4.696 9.336 1.527 **I-PENTANE** 1.415 3.492 0.396 N-PENTANE 1.233 3.043 0.349 I-HEXANE 0.612 1.804 0.151 N-HEXANE 0.316 0.931 0.079 2,2,4 TRIMETHYLPENTANE 0.002 0.010 0.000 BENZENE 0.124 0.331 0.045 **HEPTANES** 0.425 1.405 0.094 TOLUENE 0.052 0.163 0.016 OCTANES 0.141 0.539 0.028 E-BENZENE 0.003 0.012 0.001 m,o,&p-XYLENE 0.019 0.071 0.005 NONANES 0.022 0.004 0.097 **DECANES PLUS** 0.000 0.001 0.000 TOTALS 100.000 100.000 14.507

CALCULATED VALUES

REAL DRY BTU AT 15.025 PSIA, 60 DEG.F	1564.0	
REAL WET BTU AT 15.025 PSIA, 60 DEG.F	1537.3	
RELATIVE DENSITY	1.0172	
COMPRESSIBILITY FACTOR	0.99279	
	<u>C2+</u>	<u>C5+</u>
GPM's @ 15.025 psia, 60 Deg.F	14.507	1.170

-

THE SCIENCE OF SURE

Major City for Meterological Data	Tupelo, MS
Site Elevation (ft)	300
Atmospheric Pressure (P _A psia)	14.537
Table 7.1-2 Liquid	
RVP*	
API gravity*	
°F basis for gv*	
bubble point psia	
API gravity at 60F	
API gravity at 100F	
Working Loss Product Factor (K _P)	0.75
working loss turnover factor K $_N$	1.000
	*sales oil data determines RVP

per API pub 4683

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Gray - Medium

average

Gray - Medium

average

vertical tank with cone roof

no insulation

no

18,250.00

47.68

8,760

2,148.85

10.625 1,201.66

Tank Shell Color/Shade

Tank Roof Color/Shade

Roof Type

Tank Insulation

Annual Hours

Tank Underground?

Annual Turnovers, N

Tank Shell Paint Condition

Tank Roof Paint Condition

Annual Throughput (Q bbl/year)

tank max liquid volume (V_{LX} ft³)

vapor space outage (H_{vo} ft)

vapor space volume (V v ft³)

Tank ID	WST-01
Tank Description	400 BBL Water Storage Tank-Common Vent
Company Name	Kaiser-Francis Oil Company

Vertical

12.00

20.00

0.38

19.00

9.50

0.0

0.71

0.71

0.00

0.1250

Tank Orientation

Tank Diameter (D ft)

Roof Height (H_R ft)

Max Liquid Height (H _{LX} ft)

actual tank pressure (P , psig)

Shell Paint Solar Absorptance (S_A)

Roof Paint Solar Absorptance (R_A)

breather vent pressure range (ΔP_B psi)

Avg Liquid Height (H _L ft)

roof outage (H _{RO} ft)

Vertical Height/Horizontal Length (H _s ft)

Breather Vent Pressure Setting (P BP psig)

Breather Vent Vacuum Setting (P BV psig)

Tank contents (if not selected from T	Antoine	constants (log 10, m	mHg, °C)				
component	mole%	MW	lb/mole	wt%	Α	В	С
Water	100.000	18.015	18.01500	100.00000	8.108	1750.300	235.000
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000		18.015	100.000			

engineering.inc.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature $(T_{AX} \circ F)$	51.30	55.80	64.30	73.00	80.60	87.40	90.10	90.10	84.20	74.20	62.90	52.80	72.20
hourly average minimum ambient temperature $(T_{AN} \circ F)$	33.20	35.90	43.00	51.00	60.20	68.10	71.50	70.60	63.40	51.60	42.00	34.80	52.10
daily total solar insolation factor (I btu/ft ² day)	730	964	1309	1682	1912	2026	1990	1849	1536	1201	832	648	1390
daily average ambient temperature (T _{AA} °F)	42.25	45.85	53.65	62.00	70.40	77.75	80.80	80.35	73.80	62.90	52.45	43.80	62.15
liquid bulk temperature (T _B °F)	43.80	47.90	56.44	65.58	74.47	82.07	85.04	84.29	77.07	65.46	54.22	45.18	65.11
average vapor temperature (T $_{V}$ °F)	46.45	51.39	61.17	71.67	81.39	89.40	92.24	90.98	82.63	69.80	57.23	47.52	70.14
daily ambient temperature range ($\Delta T_A \ ^\circ R$)	18.10	19.90	21.30	22.00	20.40	19.30	18.60	19.50	20.80	22.60	20.90	18.00	20.10
daily vapor temperature range (ΔT_v °R)	23.44	27.62	33.50	39.28	41.43	42.28	41.28	39.91	36.37	32.87	26.95	22.47	33.81
daily average liquid surface temperature (T _{LA} °F)	45.13	49.65	58.81	68.63	77.93	85.73	88.64	87.63	79.85	67.63	55.73	46.35	67.63
daily maximum liquid surface temperature $(T_{LX} \circ F)$	50.99	56.55	67.18	78.45	88.29	96.30	98.96	97.61	88.94	75.85	62.47	51.97	76.08
daily minimum liquid surface temperature $(T_{LN} \circ F)$	39.26	42.74	50.43	58.80	67.57	75.16	78.32	77.66	70.76	59.41	48.99	40.74	59.17
vapor pressure at daily avg liq surface temp T_{LA} (P _{VA} psia)	0.148	0.176	0.245	0.346	0.474	0.610	0.669	0.648	0.505	0.335	0.220	0.155	0.335
vapor pressure at daily max liq surface temp T_{LX} (P _{VX} psia)	0.185	0.226	0.330	0.482	0.662	0.849	0.920	0.884	0.676	0.442	0.280	0.191	0.446
vapor pressure at daily min liq surface temp T_{LN} (P _{VN} psia)	0.118	0.135	0.181	0.245	0.334	0.432	0.480	0.470	0.373	0.251	0.171	0.125	0.249
daily vapor pressure range (ΔP_v)	0.0665	0.0912	0.1489	0.2365	0.3279	0.4168	0.4405	0.4140	0.3032	0.1914	0.1083	0.0664	0.1969
vapor space expansion factor (K_E)	0.0511	0.0606	0.0750	0.0910	0.1004	0.1074	0.1070	0.1027	0.0890	0.0758	0.0599	0.0490	0.0780
vapor molecular weight (M _v lb/lbmole)	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	8,702	7,860	8,702	8,421	8,702	8,421	8,702	8,702	8,421	8,702	8,421	8,702	102,456
monthly turnovers (N/month) with avg = total annual	4.05	3.66	4.05	3.92	4.05	3.92	4.05	4.05	3.92	4.05	3.92	4.05	47.68
vented vapor saturation factor (K_s)	0.9231	0.9100	0.8786	0.8368	0.7894	0.7442	0.7263	0.7325	0.7787	0.8414	0.8899	0.9197	0.8414
vent setting correction factor (K_B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0005	0.0006	0.0008	0.0011	0.0015	0.0019	0.0020	0.0020	0.0016	0.0011	0.0007	0.0005	0.0011
standing storage losses (L _s lb/month & avg is lb/yr)	1.20	1.27	1.93	2.59	3.59	4.41	4.98	4.83	3.70	2.59	1.69	1.25	34.05
working losses (L _w lb/month & avg is lb/yr)	3.20	3.40	5.16	6.91	9.60	11.79	13.29	12.90	9.87	6.93	4.51	3.35	90.90
total losses (L_T lb/month & avg is lb/yr)	4.40	4.67	7.10	9.50	13.19	16.20	18.26	17.73	13.56	9.52	6.19	4.60	124.95
max hourly Q in bbl/hour	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	11.70	
max hourly working loss at $P_{VX} \& Q/hr \& K_N=1 (L_W lb/hr)$	0.004	0.005	0.007	0.010	0.013	0.016	0.018	0.017	0.014	0.009	0.006	0.005	
breathing/standing loss (L _s lb/hr)	0.002	0.002	0.003	0.004	0.006	0.007	0.008	0.007	0.005	0.003	0.002	0.002	
max hourly total loss (L _T lb/hr)	0.006	0.007	0.010	0.014	0.019	0.024	0.026	0.025	0.019	0.013	0.009	0.006	l

L _s sum months	L _w sum months	L _T sum months
---------------------------	---------------------------	---------------------------

34.05 90.90 124.95

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions	Summary:	avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.003	0.008	30.524	
	Working Loss L _w	0.009	0.018	81.503	max hourly total loss may not add up to $L_s + L_W$ as their max values may be different months
	Total Loss L _T	0.013	0.026	112.027	

DRILLING AND PRODUCTION PRACTICE

1944

LIBRARY AMERICAN PETROLEUM INSTITUTE

Sponsored by the

CENTRAL COMMITTEE ON DRILLING AND PRODUCTION PRACTICE

DIVISION OF PRODUCTION AMERICAN PETROLEUM INSTITUTE

Published by AMERICAN PETROLEUM INSTITUTE 50 West 50th Street New York 20, N. Y.

1945

To calculate the properties of the interstitial water in the reservoir, it is observed from Table 4 that the change in formation volume of pure water at 3,000 psi, absolute, and 200 deg F (due to the solution of 15.4 cu ft per bbl of gas) is 1.0380 minus 1.0271, or 0.0059 bbl per bbl. As the solubility in the interstitial water is only 13.6 cu ft per bbl, the change in formation volume would be expected to be $\frac{13.6}{15.4}$ (0.0059), or 0.0052.

Hence, the formation volume of the interstitial water is calculated to be 1.0271 plus 0.0052, or 1.0323 bbl per bbl. A similar calculation at a reservoir pressure of 2,000 psi, absolute, yields a formation volume of 1.0340 bbl per bbl--which indicates that, even though the interstitial water contains less dissolved gas at 2,000 psi, absolute, than it did at 3,000 psi, absolute, its volume is greater at the lower pressure. This result is interesting, because it is opposite to the behavior of natural-gas-crude-oil mixtures.

The compressibility of the saturated interstitial water is found from Fig. 2 by multiplying the correction factor for the gas solubility, 1.12 for a 13.6-cu-ft-per-bbl mixture, times the compressibility, 3.12 times 10⁻⁶, of pure water, which gives 3.50 times 10⁻⁶ bbl per bbl per lb per sq in.

The use of data on the formation volumes of the saturated interstitial water, together with the data on the compressibilities, permits accurate accounting of the interstitial-water behavior for material-balance calculations when the accuracy of the other data justifies the additional refinement.

TABLE 4

Formation Volumes of Pure Water and Mixtures of Natural Gas and Water

Formation Volumes-Barrel Per Barrel

Saturation Pressure	100 Deg F	150 Deg F.	200 Deg F	250 Deg F
(PSI, Absolute)	<u></u> N	latural Gas	and Wate	r
5,000	0,9989	1,0126	1.0801	1.0522
4,000	1,0003	1.0140	1.0316	1.0587
3.000	1.0017	1.0154	1,0330	1.0552
2,000	1.0031	1,0168	1.0345	1.0568
1,000	1.0045	1.0188	1,0361	1.0584
Pressure				
Pressure (PSI, Absolute)		Pure V	Vater *	
(PSI, Absolute)	0.9910	Pure V	Vater * 	1.0418
(PSI, Absolute) 5,000	0.9910		<u>د</u>	
(PSI, Absolute) 5,000 4,000		1.0039	1,0210	1.0452
(PSI, Absolute) 5,000 4,000 3,000	0,9938	1.0039 1.0067	1.0210 1.0240	1.0452 1.0487
(PSI, Absolute) 5,000 4,000	0.9938 0.9966	1.0039 1.0067 1.0095	1.0210 1.0240 1.0271	1.0452 1.0487 1.0523
(PSI, Absolute) 5,000 4,000 3,000 2,000	0.9938 0.9966 0.9995 1.0025	1.0039 1.0067 1.0095 1.0125	1.0210 1.0240 1.0271 1.0304	1.0452 1.0487 1.0523
(PSI, Absolute) 5,000 4,000 3,000 2,000 1,000	0.9938 0.9966 0.9995 1.0025 es-	1.0039 1.0067 1.0095 1.0125	1.0210 1.0240 1.0271 1.0304	1.0418 1.0452 1.0487 1.0523 1.0560

Water production from so-called "clean" gas wells or high gas-oil-ratio (distillate) wells may be a combination of the water that exists as vapor in the reservoir gas and liquid water that is brought to the surface by mechanical entrainment in the gas. The water produced by condensation is free of salts, whereas the entrained water may contain a considerable amount of dissolved salts.

The amount of water that will be produced from a well as vapor can be determined from Table 5 and Fig. 8. For example, consider the case of a gas reservoir at 3,000 psi, absolute, and 200 deg F, in which the interstitial water has a salinity of 30,000 ppm. From Table 5 and Fig. 3, the amount of water vapor in the formation gas is shown to be 0.82 bbl per 1,000 MCF of dry gas when vaporized from pure water, or 0.82 times 0.93, which equals 0.76 bbl per 1,000 MCF for the gas in equilibrium with the saline interstitial water. If the foregoing reservoir gas is put, through a trap operating at 500 psi, absolute, and 100 deg F, the amount of water which can remain as vapor in the gas at these conditions is shown in Table 5 to be 0.31 bbl per 1,000

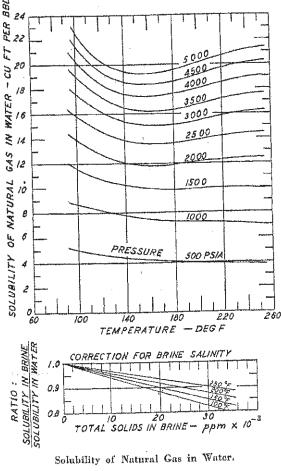


FIG. 1

176

Weighted Average for Storage Tank Vapors to Control Flare (EPN: FL-01)

Working & Breathing Losses from 1-OST:	0.16	lb/hr
Oil Flash Vapors from 1-OST:	3.09	SCFH
Total Number of OSTs:	3	
Working & Breathing Losses from 1-WST:	0.01	lb/hr
Brine Flash Vapors from 1-WST:	0.63	SCFH
Total Number of WSTs:	1	

	3.63	SCFH	9.27	SCFH	0.63	SCFH	Weighted Avg.					
Compound	Vol % Total Working & Breathing Losses	SCFH Total Working & Breathing Losses	Vol % Total Oil Flash Vapors	SCFH Total Oil Flash Vapors	Vol % Total Brine Flash Vapors	SCFH Total Brine Flash Vapors	Total Vol %	MW	Wt of Gas	Wt %	dH	Heating Value
Water	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	18	0.000	0.000	0	0.00
Nitrogen	0.000	0.000	0.000	0.000	0.8190	0.0052	0.038	28.0134	0.011	0.031	0	0.00
Carbon Dioxide	0.000	0.000	6.491	0.602	0.0760	0.0005	4.452	44.01	1.959	5.642	0	0.00
Methane	19.820	0.719	52.984	4.912	82.5260	0.5199	45.468	16.043	7.294	21.003	1010	459.23
Ethane	9.551	0.346	17.295	1.603	9.9860	0.0629	14.878	30.07	4.474	12.882	1770	263.29
Hydrogen Sulfide	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	34.08	0.000	0.000	637	0.00
Propane	20.470	0.742	12.571	1.165	4.1050	0.0259	14.295	44.097	6.303	18.150	2516	359.66
Iso-Butane	1.324	0.048	1.598	0.148	0.4090	0.0026	1.469	58.123	0.854	2.459	3252	47.78
N-Butane	23.913	0.867	4.696	0.435	1.1400	0.0072	9.683	58.123	5.628	16.205	3262	315.88
Iso-Pentane	1.066	0.039	1.415	0.131	0.2390		1.267	72.15	0.914	2.631	4001	50.68
N-Pentane	10.378	0.376	1.233	0.114	0.2670	0.0017	3.640	72.15	2.626	7.562	4009	145.92
Other/Iso Hexane	0.000	0.000	0.612	0.057	0.2765	0.0017	0.432	86.177	0.373	1.073	4750	20.54
N-Hexane	4.702	0.171	0.316	0.029	0.0640	0.0004	1.480	86.177	1.276	3.673	4756	70.40
Methylcyclopentane	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	84.1608	0.000	0.000	4501	0.00
Benzene	0.066	0.002	0.124	0.011	0.0143	0.0001	0.103	78.114	0.081	0.232	3742	3.87
CycloHexane	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	84.1608	0.000	0.000	4482	0.00
Heptanes	4.709	0.171	0.425	0.039	0.0297	0.0002	1.555	100.204	1.558	4.487	5503	85.57
Methylcyclohexane	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	98.188	0.000	0.000	5216	0.00
Toluene	0.000	0.000	0.052	0.005	0.0123	0.0001	0.036	92.141	0.033	0.096	4475	1.62
2,2,4-Trimethylpentane	0.000	0.000	0.002	0.000	0.0116	0.0001	0.002	114.231	0.002	0.006	6232	0.12
Octanes	3.098	0.112	0.141	0.013	0.0208	0.0001	0.928	114.231	1.060	3.053	6249	58.01
Ethylbenzene	0.000	0.000	0.003	0.000	0.0006	0.0000	0.002	106.167	0.002	0.007	5222	0.12
Xylenes	0.000	0.000	0.019	0.002	0.0031	0.0000	0.013	106.167	0.014	0.041	5209	0.69
Nonanes	0.000	0.000	0.022	0.002	0.0000	0.0000	0.015	128.258	0.019	0.056	6997	1.05
Decanes	0.000	0.000	0.000	0.000	0.0000	0.0000	0.000	142.285	0.000	0.000	7743	0.00
Other NM/NE HC	0.904	0.033	0.000	0.000	0.0000	0.0000	0.242	102.09	0.247	0.712	5200	12.60
Totals	100.000	3.63	100.000		100.0000	0.63	100.000		34.730	100.000		1897.02
	То	otal Stream Flowrate:	13.53	SCFH				SG	1.1976			

Specific Gravity of Tank Vapor Stream Heating Value of Tank Vapor Stream

1.7685 2891.9

Multi-Stage Separator Test

PENCOR ID No. 32905-01

Separator Conditions		Liquid	Gas	Gas	Solution	Solution	Liberated	Separator
Pressure (psig)	Temperature (°F)	Density (g/cm ³)	Density (g/cm ³)	Gravity	GOR, Rs (scf/stb)	GOR, Rs (scf/sep bbl)	GOR, RI (scf/stb)	Shrinkage (stb / bbl @ P,T)
48	70	0.819	N/A	N/A	25	25	0	0.984
20	125	0.793	0.002	1.033	16	16	9	0.956
0	80	0.822	0.002	1.734	0	0	16	1.000

Summary Data

Total Separator Gas-Oil Ratio	25	scf/stb	
Stock Tank Oil Gravity	40.6	°API at 80 °F	
Separator Volume Factor	1.016	bbls@ Psat/stb	
Color	Crude		

Notes:

- □ stb: stock tank barrel @ 80 °F.
- □ sep bbl: volume of separator liquid at P,T.
- G Solution GOR is given as the gas volume per stock tank barrel (stb) and per separator barrel (sep bbl).
- □ Separator Volume Factor is the inverse of the Separator Shrinkage Factor.
- □ Standard Conditions: 0 psig at 80 °F.

Compositional Analysis of Multi-Stage Flash Gas Sampled: 20 psig at 125 °F

Component		GPM @			
Component	Mole %	15.025 psia	Wt %	Mole Wt.	
Nitrogen	0.703	0.000	0.663	28.013	
Carbon Dioxide	0.599	0.000	0.886	44.010	
Methane	57.652	0.000	31.103	16.043	
Ethane	13.449	3.662	13.599	30.070	
Propane	11.851	3.331	17.574	44.097	
Iso-Butane	3.792	1.265	7.411	58.123	
N-Butane	5.546	1.784	10.840	58.123	
lso-Pentane	2.141	0.800	5.195	72,150	
N-Pentane	1.655	0.612	4.017	72.150	
Iso-Hexanes	0.937	0.396	2.715	86.177	
N-Hexane	0.539	0.226	1.562	86.177	
Methylcyclopentane	0.230	0.083	0.650	84.161	
Benzene	0.049	0.014	0.130	78.114	53,75
Cyclohexane	0.113	0.039	0.319	84.161	5 21 10
Heptanes	0.263	0.124	0.888	100.204	
Methylcyclohexane	0.081	0.033	0.268	98.188	
Toluene	0.068	0.023	0.212	92.141	
Iso-Octane	0.032	0.017	0.124	114.231	
Octanes	0.066	0.035	0.254	114.231	
Ethyl Benzene	0.001	0.001	0.005	106.167	
Xylenes	0.006	0.003	0.022	106.167	
Nonanes	0.021	0.012	0.092	128.258	
Decane Plus	0.206	0.184	1.471	212.384	
Totals	100.000	12.644	100.000		

Calculated Properties of Gas

Gas Specific Gravity	(Air = 1.00)		=	1.0331	
Net Heat of Combustion	(Btu/Cu.Ft. @ 15.025 Psia @ 60 °F)	Dry	=	1,614.0	Real
Gross Heat of Combustion	(Btu/Cu.Ft. @ 15.025 Psia @ 60 °F)	Dry	=	1,765.5	Real
Gross Heat of Combustion - Sat.	(Btu/Cu.Ft. @ 15.025 Psia @ 60 °F)	Wet	=	1,734.6	Water Sat.
Gas Compressibility	(@ 1 Atm. @ 60 °F)	Z	=	0.9934	

June 1998 RG-109

Air Permit Technical Guidance for Chemical Sources:

Flares and Vapor Oxidizers

printed on recycled paper

New Source Review Permits Division

TEXAS NATURAL RESOURCE CONSERVATION COMMISSION

Flare Emission Factors

The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.

Waste Stream	Destruction/Re	emoval Efficien	icy (DRE)				
VOC	98 percent (gen	98 percent (generic)					
	contain no elem following comp	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide					
H ₂ S	98 percent						
NH3	case by case						
со	case by case						
Air Contaminants	Emission Facto	ors					
thermal NO _x	steam-assist:	high Btu Iow Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu				
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu				
fuel NO _x	NO _x is 0.5 wt pe	ercent of inlet N	H ₃ , other fuels case by case				
со	steam-assist:	high Btu Iow Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu				
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu				
PM	none, required to	o be smokeless					
SO ₂	100 percent S in	fuel to SO ₂					

Table 4. Flare Factors

Technical Guidance Package for Chemical Sources

Flare Sources

Texas Natural Resource Conservati on Commissio n

John Hall, Chairman Pam Reed, Commissioner Peggy Garner, Commissioner Dan Pearson, Executive Director

Compiled by TNRCC Chemical Section Engineers November 1994

Published and distributed by the Texas Natural Resource Contervation Commission Post Office Box 13087 Austin, Texas 78711-3087 (512) 239-1250

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granied. The commission would appreciate acknowledgement.

The TNRCC is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex,

وی از مرون می مرون می مورون اورون		
	greater than standard destruction efficiencies (>SDE) are claimed. The determinations shall indicate the maximum or minimum values required for flare performance at the claimed efficiency. The determinations shall be made during the testing protocols used to demonstrate >SDE.	
	A. Tip Velocities and Flow rates (maximum)	
	3. Heating Values (minimum).	
4.	The applicant shall install, calibrate, operate and maintain a flow meter to monitor actual stream flow rates to, and calculate tip velocities of, flares for which >SDE are	
	alaimed.	
5.	Records shall be maintained which indicate on a continuous basis the flow rates and heating values of the streams directed to the flares for which >SDE are claimed.	•
6.	Flow rates of streams to flares for which >SDE are claimed shall not exceed the lesser of the indicated maxima; (1) flow rates which produce the tip velocities specified in 40 CFR 60.18, or (2) flow rates demonstrated during testing to correspond to the demonstrated flare efficiency.	
7.	Tip velocities of flares for which >SDE are claimed shall not exceed the lesser of the indicated maxima; (1) tip velocities specified in 40 CFR 60.18, or (2) tip velocities demonstrated during testing to correspond to the demonstrated flare	
8.	Heating values of streams directed to flares for which >SDE are claimed shall be no less than the greater of the indicated minima; (1) 300 BTU/scf for streams directed to non-assisted flares and 400 BTU/scf for streams directed to assisted flares, or (2) heating values demonstrated during testing to flare of the demonstrated flare efficiency.	· • • •
9.	The applicant shall provide vendor data supportive of the claimed flare efficiency.	
·		
F.		
NO : -	and CO Emissions	
<u>iv</u> y z E	and co factors were derived by the Chemical	

The following NO_x and CO factors were derived by the character Section of the New Source Review Division based on data published in the 1983 CMA document entitled, A Report on A Flare Efficiency Study. These factors should be used in estimating NO_x and CO emissions rather than the emission factors found in Section 11.5 of AP-42.

... Table 3: Flare Factors.

9

p

ى ئېرىكىنىڭ ئۆلۈمىيەنىيە ئېرىكىنىڭ ئېرىكىنىڭ ئۆلۈكىنى ئېرىكىنىڭ		·	1
Туре	Naste Gas	NO 167MM Btu	CO Ib/MM Btu
	High Btu (>1000/scf)	0.0485	0.3503
Steam Assisted Steam Assisted	-18007scf) 192-	0.0680	0.3465
	High Btu (>1000/scf)	0.1380	0.2755
Air & Nonassisted		0.0641	0.5496
Air & Nonassisted	18807scf (184-		

Example 2: For the sample case, calculate the mole percent of each constituent in the waste stream for both the average and maximum scenarios by dividing the individual flow rates by the total flow rates and multiplying by 100 percent.

 ,	~	1	+ion	of	constitu	ients	in	mole	percent.	

Table 4: Calc			Vaximum Case	•
	Average Case		scfm	• mole §
	scfm	mole %		5.08
Butane+	10.16	. 5.08	12.70	
to an and the second to an and the second to be set of the second to be second t	5.94	. 2.97	7.43	2.97
Propylene	5.08	2.54	6.35	2.54
Propane		42.37	105.93	42.37
Ethylene	84.74		46.50	18.64
Ethane	37.28	18.64	والمحافظ والمراجع والمحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحاف	11.02
Eydrogen	. 22.04	11.02	27.55	
,Ammonia	4.24	2.12	5.30	2.12
	30.50	15.26	38.13	15.16
Inerts		100.00	250.00	100.00
Totals	200.00	100.00		

In this case, our calculations are simplified since the average and maximum case waste streams have the same compositions. If they were of different composition, the following heating value calculations would be required for both cases. Note that the maximum case shows the maximum vent stream to the flare under normal operating conditions for the purpose of calculating emissions from the flare (upset and maintenance conditions are not considered).

Next, estimate the net, or lower, heating value of the waste stream

10

Table 13.5-1 (English Units). THC, NOx AND SOOT EMISSIONS FACTORS FOR FLARE OPERATIONS FOR CERTAIN CHEMICAL MANUFACTURING PROCESSES^a

Pollutant	SCC ^e	Emissions Factor Value	Emissions Factor Units	Grade or Representativeness
THC, elevated flares ^c	30190099;	0.14 ^{b,f}	lb/10 ⁶ Btu	В
THC, enclosed ground flares ^{g,h} Low Percent Load ⁱ	30119701; 30119705; 30119709; 30119741	8.37 ^j or 3.88e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
THC, enclosed ground flares ^{g,h} Normal to High Percent Load ⁱ	50117741	2.56 ^j or 1.20e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
Nitrogen oxides, elevated flares ^d		0.068 ^{b,k}	1b/10 ⁶ Btu	В
Soot, elevated flares ^d		$0 - 274^{b}$	μg/L	В

- ^a All of the emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the THC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factors are representative of controlled emissions rates for THC. These values are not representative of the uncontrolled THC routed to the flare from the associated process, and as such, they may not be appropriate for estimating the uncontrolled THC emissions or potential to emit from the associated process.
- ^b Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
- ^c Measured as methane equivalent. The THC emissions factor may not be appropriate for reporting volatile organic compounds (VOC) emissions when a VOC emissions factor exists.
- ^d Soot in concentration values: nonsmoking flares, 0 micrograms per liter ($\mu g/L$); lightly smoking flares, 40 $\mu g/L$; average smoking flares, 177 $\mu g/L$; and heavily smoking flares, 274 $\mu g/L$.
- ^e See Table 13.5-4 for a description of these SCCs.
- ^f Factor developed using the lower (net) heating value of the vent gas.
- ^g THC measured as propane by US EPA Method 25A.
- ^h These factors apply to well operated ground flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >200 btu/scf net heating value in the vent gas and less than the specified maximum exit velocity. The emissions factor data set had an average destruction efficiency of 99.99%. Based on tests using pure propylene fuel. References 12 through 33 and 39 through 45.
- ⁱ The dataset for these tests were broken into four different test conditions: ramping back and forth between 0 and 30% of load; ramping back and forth between 30% and 70% of load; ramping back and forth between 70% and 100% of load; and a fixed rate maximum load condition. Analyses determined that only the first condition was statistically different. Low percent load is represented by a unit operating at approximately less than 30% of maximum load.
- ^j Heat input is an appropriate basis for combustion emissions factor. However, based on available data, heat input data is not always known, but gas flowrate is generally available. Therefore, the emissions factor is presented in two different forms.
- ^k Factor developed using the higher (gross) heating value of the vent gas.

Table 13.5-2 (English Units). VOC and CO EMISSIONS FACTORS FOR ELEVATED FLARE OPERATIONS FOR CERTAIN REFINERY AND CHEMICAL MANUFACTURING PROCESSES^{a,b}

Pollutant	SCC ^e	Emissions Factor (lb/10 ⁶ Btu) ^f	Representativeness
Volatile organic compounds ^c	30190099; 30600904; 30119701; 30119705; 30119709; 30119741; 30119799; 30130115;	0.66	Poorly
Carbon monoxide ^d	30600201; 30600401; 30600508; 30600903; 30600999; 30601701; 30601801; 30688801; 40600240	0.31	Poorly

^a The emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the VOC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factor is representative of controlled emissions rates for VOC. This values is not representative of the uncontrolled VOC routed to the flare from the associated process, and as such, it may not be appropriate for estimating the uncontrolled VOC emissions or potential to emit from the associated process.

- ^b These factors apply to well operated flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >300 btu/scf net heating value in the vent gas and less than the specified maximum flare tip velocity. The VOC emissions factor data set had an average destruction efficiency of 98.9%, and the CO emissions factor data set had an average destruction efficiency of 99.1% (based on test reports where destruction efficiency was provided). These factors are based on steam-assisted and air-assisted flares burning a variety of vent gases.
- ^c References 4 through 9 and 11.
- ^d References 1, 4 through 8, and 11.
- ^e See Table 13.5-4 for a description of these SCCs.
- ^f Factor developed using the lower (net) heating value of the vent gas.

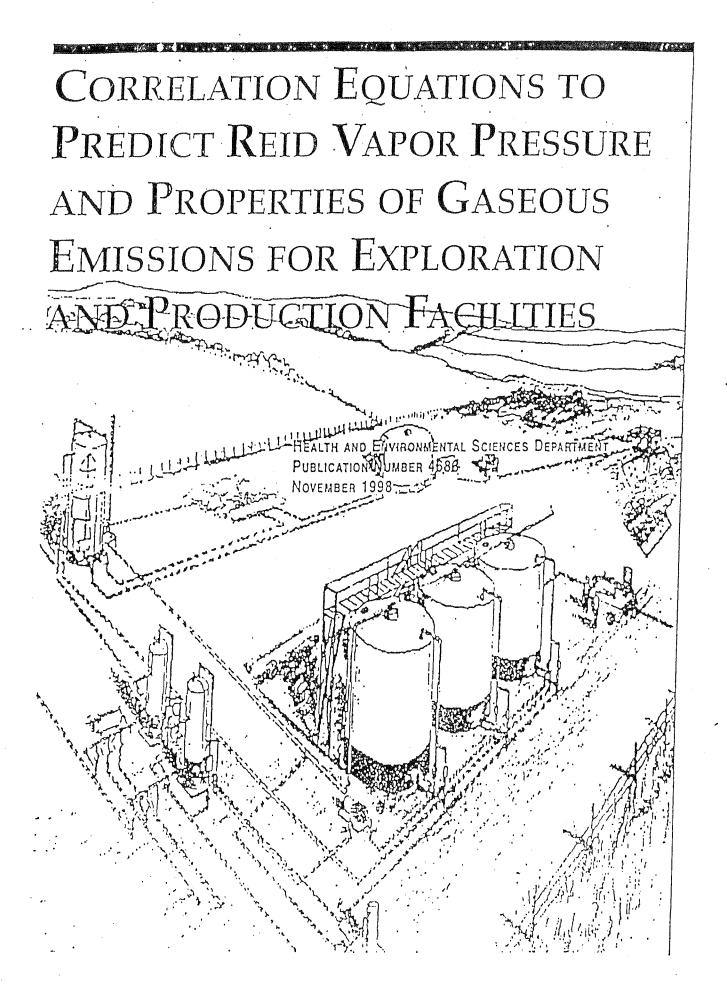


Table 3-2 summarizes Pearson correlation coefficients (r) calculated for the sales oil RVP relative to the other variables. Better correlations are indicated as |r| approaches 1. Table 3-2 shows that sales oil APIG is the best predictor of RVP. (Note that the sales oil bubble point is an equally good predictor, r = 0.78.)

	Pearson Correlation
Variable	With RVP
SP	0.52
ln(SP)	0.51
ST	-0.37
APIG	0.79

Table 3-2. Single-parameter correlation coefficients for RVP.

REGRESSION ANALYSIS

• • • • • • • • • • • • • • •

A multivariate linear regression was developed, represented by the equation shown below.

RVP = 0.003 + 0.075 In(SP) - 0.016 ST + 0.165 APIG

(Equation 3-4)

The correlation coefficient for Equation 3-4 (r = 0.80) is not significantly better than the singleparameter coefficient for sales oil APIG shown in Table 3-2. Therefore, the single-parameter fit based on sales oil APIG is recommended for use (see Figure 3-2).

RVP = -1.699 + 0.179 APIG

(Equation 3-5)

The error of the estimate (E) is one measure of the performance of a model or assumption, where the error equals the observed value (Obs) less the estimated value (Est), E = Obs - Est. In Figure 3-2, it is obvious that the error associated with the regression line is much less than the error associated with the default assumption, RVP = 5 psia.

3-4

$$P = \exp\left\{ \left[\left(\frac{2,799}{T + 459.6} \right) - 2.227 \right] \log_{10}(RVP) - \left(\frac{7,261}{T + 459.6} \right) + 12.82 \right\}$$

Where:

P = stock true vapor pressure, in pounds per square inch absolute.

T = stock temperature, in degrees Fahrenheit.

RVP = Reid vapor pressure, in pounds per square inch.

Note: This equation was derived from a regression analysis of points read off Figure 7.1-13a over the full range of Reid vapor pressures, slopes of the ASTM distillation curve at 10 percent evaporated, and stock temperatures. In general, the equation yields *P* values that are within +0.05 pound per square inch absolute of the values obtained directly from the nomograph.

Figure 7.1-13b. Equation for true vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square inch.⁴ See note at Figure 7.1-13a.

$$\begin{split} P &= \exp\left\{\left[\begin{array}{c} 0.7553 - \left(\frac{413.0}{T+459.6}\right) \right] S^{0.5} \log_{10}\left(\text{RVP}\right) - \left[1.854 - \left(\frac{1,042}{T+459.6}\right) \right] S^{0.5} \right. \\ & \left. + \left[\left(\frac{2,416}{T+459.6}\right) - 2.013 \right] \log_{10}\left(\text{RVP}\right) - \left(\frac{8,742}{T+459.6}\right) + 15.64 \right] \right] \end{split}$$
 Where:
$$\begin{split} P &= \text{ stock true vapor pressure, in pounds per square inch absolute.} \\ T &= \text{ stock true vapor pressure, in degrees Fahrenheit.} \\ \text{RVP} &= \text{Reid vapor pressure, in pounds per square inch.} \\ S &= \text{ slope of the ASTM distillation curve at 10 percent evaporated, in degrees Fahrenheit per percent.} \end{split}$$

Note: This equation was derived from a regression analysis of points read off Figure 7.1-14a over the full range of Reid vapor pressures, slopes of the ASTM distillation curve at 10 percent evaporated, and stock temperatures. In general, the equation yields P values that are within +0.05 pound per square inch absolute of the values obtained directly from the nomograph.

Figure 7.1-14b. Equation for true vapor pressure of refined petroleum stocks with a Reid vapor pressure of 1 to 20 pounds per square inch.⁴ See note at Figure 7.1-14a.

A = $15.64 - 1.854 \text{ s}^{0.5} - (0.8742 - 0.3280 \text{ s}^{0.5}) \underline{\text{in}}(\text{RVP})$ B = $8,742 - 1,042 \text{ s}^{0.5} - (1.049 - 179.4 \text{ s}^{0.5}) \underline{\text{in}}(\text{RVP})$
where:
RVP = stock Reid vapor pressure, in pounds per square inch
In = natural logarithm function
S = stock ASTM-D86 distillation slope at 10 volume percent
evaporation (°F/vol %)

Figure 7.1-15. Equations to determine vapor pressure constants A and B for refined petroleum stocks.²²

Petroleum Liquid Mixture	Vapor Molecular Weight ^a	Liquid Molecular Weight ^b	Liquid Density ª	ASTM D86 Distillation Slope ^c	Vapor Pressure Equation Constant ^d	Vapor Pressure Equation Constant ^d	True Vapor Pressure (at 60 °F)
	M_V	M_L	W_L	S	A	В	P_{VA}
	lb/lb-mole	lb/lb-mole	lb/gal	°F/vol %	dimensionless	٩R	psia
Midcontinent Crude Oil	50	207	7.1	_	Figure 7.1-16	Figure 7.1-16	_
Refined Petroleum Stocks	_	_	-	-	Figure 7.1-15	Figure 7.1-15	_
Motor Gasoline RVP 13	62	92	5.6	3.0	11.644	5043.6	7.0
Motor Gasoline RVP 10	66 ^e	92	5.6	3.0	11.724	5237.3	5.2
Motor Gasoline RVP 7	68	92	5.6	3.0	11.833	5500.6	3.5
Light Naphtha RVP 9- 14	_	_	-	3.5	_	-	_
Naphtha RVP 2-8	-	-	-	2.5	-	-	-
Aviation Gasoline	-	-	-	2.0	-	-	-
Jet Naphtha (JP-4)	80	120	6.4	_	11.368	5784.3	1.3
Jet Kerosene (Jet A)	130	162	7.0	_	12.390	8933.0	0.008
No. 2 Fuel Oil (Diesel)	130	188	7.1	_	12.101	8907.0	0.006
No. 6 Fuel Oil ^f	130	387	7.9	_	10.781	8933.0	0.002
Vacuum Residual Oil ^g	190	387	7.9	_	10.104	10,475.5	0.00004

Table 7.1-2. PROPERTIES (Mv, ML, PvA, WL) OF SELECTED PETROLEUM LIQUIDS^{a, e}

^a References 10 and 11

^b Liquid molecular weights from "Memorandum from Patrick B. Murphy, Radian/RTP to James F. Durham, EPA/CPB Concerning Petroleum Refinery Liquid HAP and Properties Data, August 10, 1993," as adopted in versions 3.1 and 4.0 of EPA's TANKS software.

^c Reference 4.

^d For motor gasolines, see Figure 7.1-15;

for crude oil, see Figure 7.1-16;

for Jet Naphtha, Jet Kerosene, and No. 2 Fuel Oil, see Barnett and Hibbard¹⁰;

for No. 6 Fuel Oil.²²

^e Alternatively, in the absence of measured data, a value of 66 lb/lb-mole may be assumed for all gasolines, in that the variability shown as a function of RVP is speculative.

^f This is for a blend of Vacuum Residual Oil with a light distillate cutter stock, or similar mixture. Vapor pressure constants given will result in higher vapor pressure values than shown previously in AP-42 for Residual Oil No. 6.

^g This is the straight residue from the bottom of the vacuum distillation column, prior to any further processing or blending. Properties given for Vacuum Residual Oil are those given for Residual Oil No. 6 previously in AP-42.

5.2 Transportation And Marketing Of Petroleum Liquids¹⁻³

5.2.1 General

The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source of evaporation loss. Crude oil is transported from production operations to a refinery by tankers, barges, rail tank cars, tank trucks, and pipelines. Refined petroleum products are conveyed to fuel marketing terminals and petrochemical industries by these same modes. From the fuel marketing terminals, the fuels are delivered by tank trucks to service stations, commercial accounts, and local bulk storage plants. The final destination for gasoline is usually a motor vehicle gasoline tank. Similar distribution paths exist for fuel oils and other petroleum products. A general depiction of these activities is shown in Figure 5.2-1.

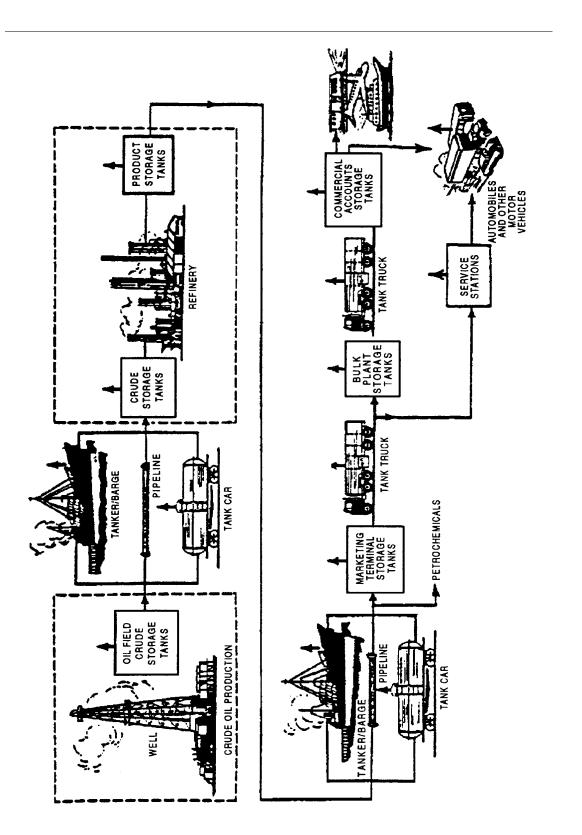
5.2.2 Emissions And Controls

Evaporative emissions from the transportation and marketing of petroleum liquids may be considered, by storage equipment and mode of transportation used, in four categories:

- 1. Rail tank cars, tank trucks, and marine vessels: loading, transit, and ballasting losses.
- 2. Service stations: bulk fuel drop losses and underground tank breathing losses.
- 3. Motor vehicle tanks: refueling losses.
- 4. Large storage tanks: breathing, working, and standing storage losses. (See Chapter 7, "Liquid Storage Tanks".)

Evaporative and exhaust emissions are also associated with motor vehicle operation, and these topics are discussed in AP-42 *Volume II: Mobile Sources*.

5.2.2.1 Rail Tank Cars, Tank Trucks, And Marine Vessels -


Emissions from these sources are from loading losses, ballasting losses, and transit losses.

5.2.2.1.1 Loading Losses -

Loading losses are the primary source of evaporative emissions from rail tank car, tank truck, and marine vessel operations. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. These vapors are a composite of (1) vapors formed in the empty tank by evaporation of residual product from previous loads, (2) vapors transferred to the tank in vapor balance systems as product is being unloaded, and (3) vapors generated in the tank as the new product is being loaded. The quantity of evaporative losses from loading operations is, therefore, a function of the following parameters:

- Physical and chemical characteristics of the previous cargo;
- Method of unloading the previous cargo;
- Operations to transport the empty carrier to a loading terminal;
- Method of loading the new cargo; and
- Physical and chemical characteristics of the new cargo.

The principal methods of cargo carrier loading are illustrated in Figure 5.2-2, Figure 5.2-3, and Figure 5.2-4. In the splash loading method, the fill pipe dispensing the cargo is lowered only part way into the cargo tank. Significant turbulence and vapor/liquid contact occur during the splash

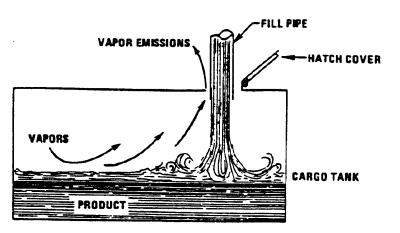


Figure 5.2-2. Splash loading method.

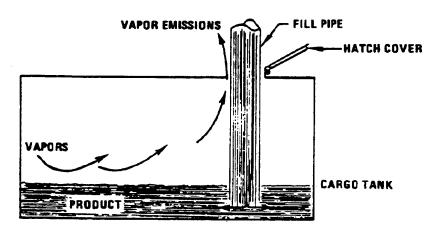


Figure 5.2-3. Submerged fill pipe.

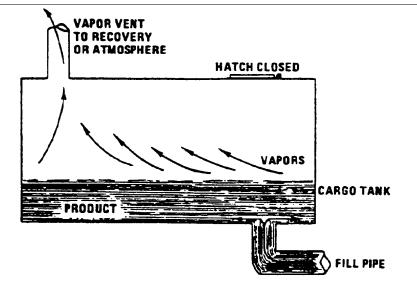


Figure 5.2-4. Bottom loading.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{SPM}{T}$$
(1)

where:

- $L_{\rm L}$ = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)
- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

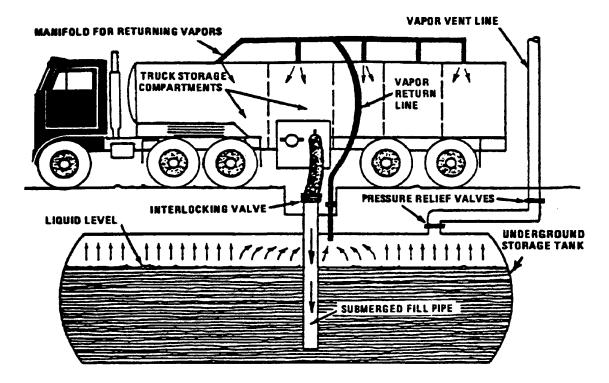


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1.	SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID
	LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-

2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks not passing one of these annual leak tests⁶.

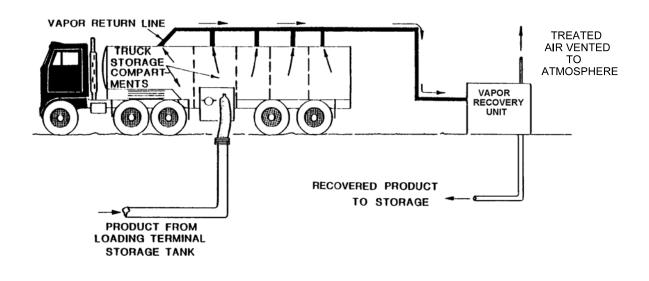


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L₁) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal Gasoline Reid vapor pressure (RVP) is 9 psia Product temperature is 80°F Vapor recovery efficiency is 95 percent Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

- S = saturation factor (see Table 5.2-1) 1.00
- P = true vapor pressure of gasoline = 6.6 psia
- M = molecular weight of gasoline vapors = 66
- T = temperature of gasoline = 540°R

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_{L} = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb}/10^3 \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal})(8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds} (\text{lb})$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations.⁸ These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are

expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons ($lb/10^3$ gal).

		Ships/Oce	an Barges ^b	Bai	rges ^b
Vessel Tank Condition	Previous Cargo	mg/L Transferred	lb/10 ³ gal Transferred	mg/L Transferred	lb/10 ³ gal Transferred
Uncleaned	Volatile ^c	315	2.6	465	3.9
Ballasted	Volatile	205	1.7	d	d
Cleaned	Volatile	180	1.5	ND	ND
Gas-freed	Volatile	85	0.7	ND	ND
Any condition	Nonvolatile	85	0.7	ND	ND
Gas-freed	Any cargo	ND	ND	245	2.0
Typical overall situation ^e	Any cargo	215	1.8	410	3.4

Table 5.2-2 (Metric And English Units). VOLATILE ORGANIC COMPOUND (VOC) EMISSION FACTORS FOR GASOLINE LOADING OPERATIONS AT MARINE TERMINALS^a

^a References 2,9. Factors are for both VOC emissions (which excludes methane and ethane) and total organic emissions, because methane and ethane have been found to constitute a negligible weight fraction of the evaporative emissions from gasoline. ND = no data.

^b Ocean barges (tank compartment depth about 12.2 m [40 ft]) exhibit emission levels similar to tank ships. Shallow draft barges (compartment depth 3.0 to 3.7 m [10 to 12 ft]) exhibit higher emission levels.

с Volatile cargoes are those with a true vapor pressure greater than 10 kilopascals (kPa) (1.5 psia).

^d Barges are usually not ballasted.

e Based on observation that 41% of tested ship compartments were uncleaned, 11% ballasted, 24% cleaned, and 24% gas-freed. For barges, 76% were uncleaned.

In addition to Equation 1, which estimates emissions from the loading of petroleum liquids, Equation 2 has been developed specifically for estimating emissions from the loading of crude oil into ships and ocean barges:

$$C_{\rm L} = C_{\rm A} + C_{\rm G} \tag{2}$$

where:

 C_L = total loading loss, lb/10³ gal of crude oil loaded C_A = arrival emission factor, contributed by vapors in the empty tank compartment before loading, lb/10³ gal loaded (see Note below)

 $C_{\rm G}$ = generated emission factor, contributed by evaporation during loading, lb/10³ gal loaded

Note: Values of C_A for various cargo tank conditions are listed in Table 5.2-3.

5.2-3 (English Units). AVERAGE ARRIVAL EMISSION FACTORS, C_A, FOR CRUDE OIL LOADING EMISSION EQUATION^a

Ship/Ocean Barge Tank Condition	Previous Cargo	Arrival Emission Factor, lb/10 ³ gal
Uncleaned	Volatile ^b	0.86
Ballasted	Volatile	0.46
Cleaned or gas-freed	Volatile	0.33
Any condition	Nonvolatile	0.33

^a Arrival emission factors (C_A) to be added to generated emission factors (C_G) calculated in Equation 3 to produce total crude oil loading loss (C_L). Factors are for total organic compounds; VOC emission factors average about 15% lower, because VOC does not include methane or ethane.

^b Volatile cargoes are those with a true vapor pressure greater than 10 kPa (1.5 psia).

This equation was developed empirically from test measurements of several vessel compartments.⁸ The quantity C_{G} can be calculated using Equation 3:

$$C_{G} = 1.84 (0.44 P - 0.42) \frac{MG}{T}$$
 (3)

where:

P = true vapor pressure of loaded crude oil, psia M = molecular weight of vapors, lb/lb-mole G = vapor growth factor = 1.02 (dimensionless) T = temperature of vapors, °R (°F + 460)

Emission factors derived from Equation 3 and Table 5.2-3 represent total organic compounds. Volatile organic compound (VOC) emission factors (which exclude methane and ethane because they are exempted from the regulatory definition of "VOC") for crude oil vapors have been found to range from approximately 55 to 100 weight percent of these total organic factors. When specific vapor composition information is not available, the VOC emission factor can be estimated by taking 85 percent of the total organic factor.³

5.2.2.1.2 Ballasting Losses -

Ballasting operations are a major source of evaporative emissions associated with the unloading of petroleum liquids at marine terminals. It is common practice to load several cargo tank compartments with sea water after the cargo has been unloaded. This water, termed "ballast", improves the stability of the empty tanker during the subsequent voyage. Although ballasting practices vary, individual cargo tanks are ballasted typically about 80 percent, and the total vessel 15 to 40 percent, of capacity. Ballasting emissions occur as vapor-laden air in the "empty" cargo tank is displaced to the atmosphere by ballast water being pumped into the tank. Upon arrival at a loading port, the ballast water is pumped from the cargo tanks before the new cargo is loaded. The ballasting of cargo tanks reduces the quantity of vapors returning in the empty tank, thereby reducing the quantity of vapors emitted during subsequent tanker loading. Regulations administered by the U. S. Coast Guard require that, at marine terminals located in ozone nonattainment areas, large tankers with crude oil washing systems contain the organic vapors from ballasting.¹⁰ This is accomplished principally by displacing the vapors during ballasting into a cargo tank being simultaneously unloaded. In other areas, marine vessels emit organic vapors directly to the atmosphere.

Equation 4 has been developed from test data to calculate the ballasting emissions from crude oil ships and ocean barges⁸:

$$L_{\rm B} = 0.31 + 0.20 \,\mathrm{P} + 0.01 \,\mathrm{PU}_{\rm A} \tag{4}$$

where:

- L_B = ballasting emission factor, lb/10³ gal of ballast water P = true vapor pressure of discharged crude oil, psia
- U_{A} = arrival cargo true ullage, before dockside discharge, measured from the deck, feet; (the term "ullage" here refers to the distance between the cargo surface level and the deck level)

Table 5.2-4 lists average total organic emission factors for ballasting into uncleaned crude oil cargo compartments. The first category applies to "full" compartments wherein the crude oil true ullage just before cargo discharge is less than 1.5 meters (m) (5 ft). The second category applies to lightered, or short-loaded, compartments (part of cargo previously discharged, or original load a partial fill), with an arrival true ullage greater than 1.5 m (5 ft). It should be remembered that these tabulated emission factors are examples only, based on average conditions, to be used when crude oil vapor pressure is unknown. Equation 4 should be used when information about crude oil vapor pressure and cargo compartment condition is available. The following sample calculation illustrates the use of Equation 4.

5.2-4 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR CRUDE OIL BALLASTING^a

	Average Emission Factors			
	By Category		Туріса	ll Overall ^b
Compartment Condition Before Cargo Discharge	mg/L Ballast Water	lb/10 ³ gal Ballast Water	mg/L Ballast Water	lb/10 ³ gal Ballast Water
Fully loaded ^c	111	0.9		
Lightered or previously short loaded ^d	171	1.4 A	129	1.1

^a Assumes crude oil temperature of 16°C (60°F) and RVP of 34 kPa (5 psia). VOC emission factors average about 85% of these total organic factors, because VOCs do not include methane or ethane.

^b Based on observation that 70% of tested compartments had been fully loaded before ballasting. May not represent average vessel practices.

^c Assumed typical arrival ullage of 0.6 m (2 ft).

^d Assumed typical arrival ullage of 6.1 m (20 ft).

1		and the second se	1			
Act SIze	Stem Tvl	Dlaph.		QUIRED TO S e 20 (psig)	WITCH (SCF) @ 30 (psta)	Effective
9	0.625	F	0.052	0.065	0.092	Aroa
9	0.750	F	0.079	0.096	0.119	
9	1.000	M	0.050	0.060	0.080	35
12	0.625	<u>М</u> F	0.091	0.111	0.126	·
12	1.000	F	0.116	0.150	0.218	
12	1.250	M	0.151	0.184	0.254	
12	1.500		0.128	0.153	0.202	70 /
12	2.000	<u>M</u>	0.150	0.178	0.234	
14			0.201	0.245	0.311	
14	0.625	<u>M'</u>	0.155	0.189	0.257	
14	1.250	M	0.244	0.270	0.361	
14	2.000		0.253	0.303	0.404	85
18	1.250	IM	0.313	0.374	0.495	
18	1.500	<u>M</u>	0.504	0.620	0.84.9	an a
18	2.000	M	0.556	0.680	0,927	
18	2.750	M	0.696	0.844	1.317	
18		M	0.838	1.009	1.350	180
18	3.000	M	0.922	1.110	1.473	
	4.000	/11	1.057	1.266	1.681	

AIR REQUIRED TO STROKE VALVE

F = Flat

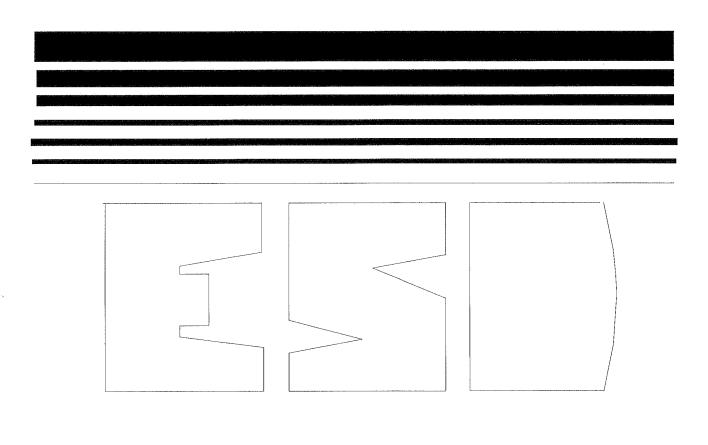
M = Molded

SCF = Standard Cubic Foot

102B BURGESS DRIVE BROUSSARD, LA 70518 NORRISEAL CONTROLS NORRIS VALVES

 PHONE
 319-837-3223

 FAX
 318-837-3448


United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Protocol for Equipment Leak Emission Estimates

Equipment Type	Service ^a	Emission Factor (kg/hr/source) ^b
Valves	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

^aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

^bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

^CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

EPA Average Emission Factors

The EPA emission factors used by GRI-HAPCalc 3.01 to estimate fugitive emissions were developed from data obtained during a joint American Petroleum Institute (API)/GRI fugitive testing program at natural gas production and processing sites [U.S. Environmental Protection Agency, 1995; American Petroleum Institute, 1995]. Over 184,000 components at 20 sites were screened for total hydrocarbon (THC) emissions, and the results were averaged for each component type to develop THC emission factors. Furthermore, a statistical analysis conducted by the EPA found no difference in THC fugitive emissions by industry segment for oil and gas production operation. The average THC emission factors for equipment in gas and light liquid service are shown in Table 20.

	Emission Factor, lb THC/yr				
Component	Gas Service	Light Liquids Service	Heavy Liquids Service		
Connections	3.9	4.1	0.1		
Flanges	7.5	2.1	0.0075		
Open-Ended Line	39	27	2.7		
Pump Seals	46	250	NA		
Valves	87	48	0.16		
Other*	170		0.62		

Table 20.	EPA Average	Emission	Factors	for THC
-----------	-------------	----------	---------	---------

* The "Other" category includes compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents.

To calculate speciated fugitive emissions for BTEX, methane, NMHC, and NMEHC, composition data obtained during a joint American Petroleum Institute (API)/GRI fugitive testing program are used with the THC emission factors above. The average compositions of fugitive leaks from production facilities and natural gas plants are shown in Table 21.

	Fractional Composition, lb/lb THC				
Compound	Gas Production/ Compressor Station	Gas Plant	Light Liquid Service	Heavy Liquid Service	
Benzene	0.00023	0.00123	0.00027	0.00935	
Toluene	0.00039	0.00032	0.00075	0.00344	
Ethylbenzene	0.000020	0.000010	0.000170	0.00051	
Xylenes (m,p,o)	0.00010	0.000040	0.000360	0.00372	
Methane	0.920	0.564	0.613	0.942	
NMHC	0.080	0.436	0.387	0.058	
NMEHC	0.0350	0.253	0.292	0.030	

Table 21. Fractional Composition of Fugitive Emissions	Table 21.	Fractional	Composition	of Fugitive	Emissions
--	-----------	------------	-------------	-------------	-----------

The following equation shows how annual emission rates are calculated from the above emission factors. The user-entered component count of each type of fugitive emission source is multiplied by the emission factor (lb THC/component/year) and the fractional composition (lb compound *i* / lb THC). This is then converted to an annual emission rate. Note that all calculations in GRI-HAPCalc 3.01 are done in U.S. Standard units and converted to metric units when necessary.