

October 28, 2022

Mississippi Department of Environmental Quality Office of Pollution Control Environmental Permits Division 515 E. Amite Street Jackson, MS 39201

RE:

Notice of Intent for Coverage Under the Oil Production General Permit

Paloma Natural Gas, LLC

C.H. Lewis 30-19H No. 1 Production Facility AI No.: 64864; Permit No.: 0080-00040

Amite County, MS

In accordance with MAC Title 11, Part 2, submitted with this are two (2) bound sets of the referenced material. An electronic copy has also been submitted through the EPD Electronic Application Submittal webpage. Request is hereby made for renewal of the referenced permit and coverage under the Oil Production General Permit (OPGP).

The facility functions as an oil & gas production site and operates controls such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit. Details of the operations, emission estimates, and associated emission programs are included herein and verify that the facility should be classified as a synthetic minor source under the State and Federal air permitting programs. All measures should be taken in the review process to assure that the minor classification is federally recognized.

A copy of the public notice is enclosed and will be published in The Southern Herald. Additionally, a copy of the public notice and the complete OPGP NOI will be provided to the Liberty Public Library. The public notice, notarized proof of publication, and library proof of receipt will be submitted to MDEQ when available.

If any other information is required regarding these matters, please do not hesitate to contact HLP Engineering, Inc. at (337) 839-1075. All written correspondence should be directed to: **Paloma Natural Gas, LLC, 801 Louisiana Street, Suite 700, Houston, TX 77002, Attn.: Joel Scott.** Thank you in advance for your assistance with this matter.

Sincerely,

HLP ENGINEERING, INC.

amie Nease Inclosures

XC:

Ioel Scott - Paloma

Notice of Intent for Oil Production General Permit

Paloma Natural Gas, LLC

C.H. Lewis 30-19H No. 1 Production Facility Amite County, MS AI No.: 64864

October 2022

Table of Contents

α	4 •	4
5	ection	- 1

Facility Information	Section A
Facility Location Map(s)	
Simplified Process Flow Diagram & Process Description	
Facility-Wide Emissions Information	Section B
Maximum Uncontrolled Emissions	B.1
Proposed Allowable Emissions	B.2
Proposed Allowable Hazardous Air Pollutants (HAPs)	B.3
Greenhouse Gas Emissions	B.4
Stack Parameters and Exit Conditions	B.5
Emission Point Source List	B.6
Section 2	
Emission Point Data:	

Section C

Section D

Section E

Section F

Section G

Fuel Burning Equipment – External Combustion Sources

Fuel Burning Equipment – Internal Combustion Engines

Section 3

Emission Calculations

Flare

Tank Summary

Compliance Plan

Section 4

Mississippi Secretary of State Certificate of Good Standing Supporting Documents

Facility (Agency Interest) Information		Section OPGP - A
1. Name, Address, and Location of Facility		
	. 10 110	
A. Owner/Company Name: Paloma N	atural Gas, LLC	
B. Facility Name (if different than A. above):	C.H. Lewis 30-19H No.	1 Production Facility
C. Facility Air Permit/Coverage No. (if known)	0080-00040	
D. Agency Interest No. (if known):	64864	
E. Physical Address 1. Street Address: The facility is located at 2. City: Liberty 4. County: Amite 6. Telephone No.: 918-261-1014 8. Are facility records kept at this location?	oproximately 10.8 miles sou 3. State: 5. Zip Code: 7. Fax No.: Yes ✓ No. F	MS
F. Mailing Address 1. Street Address or P.O. Box: 801 Louis 2. City: Houston 4. Zip Code: 77002	iana Street, Suite 700 3. State:	TX
G. Latitude/Longitude Data 1. Collection Point (check one): Site Entrance 2. Method of Collection (check one): GPS Specify coordinate sy Man Interrelation (Coords Forth	V	Other: Well location
Map Interpolation (Google Earth 3. Latitude (<i>degrees/minutes/seconds</i>):	31 06 04.00	plat
4. Longitude (degrees/minutes/seconds):	90 38 31.81	
5. Elevation (feet): 375±	70 30 31.01	
H. SIC Code: 1311	<u>-</u>	
2. Name and Address of Facility Contact		
A. Name: Joel Scott	Title:	Senior Vice President, Production
B. Mailing Address		
·	iana Street, Suite 700	TEXT
2. City: Houston	3. State:	TX
4. Zip Code: 77002	5. Fax No.:	
6. Telephone No.: 918-261-1014 7. Email: J.Scott@palomanaturalgas.com	_	

Facility (Age	ncy Interest) Information			Section OPGP - A
3. Name and	Address of Air Contact (if differe	ent from	Facility Co	entact)
A. Name:			Title:	
B. Mailing	Address Idress or P.O. Box:			
2. City:	duess of 1.0. Dox.		3. State:	
4. Zip Code			5. Fax No.:	
6. Telephor			<i>5.142110.</i> .	
7. Email:				
4. Name and	Address of Responsible Official f	or the l	Facility	
The Form must	be signed by a Responsible Official as a	defined ir	ı 11 Miss. Adr	nin. Code Pt.2, R. 2.1.C(24).
A. Name:	Joel Scott		Title:	Senior Vice President, Production
	ddress or P.O. Box: 801 Louisian	a Street,		
2. City:			3. State:	TX
4. Zip Code			5. Fax No.:	
6. Telephor				
7. Email:	J.Scott@palomanaturalgas.com			
C. Is the pe	rson above a duly authorized represen Yes	tative an	d not a corpo	rate officer?
If yes, has v	written notification of such authorization	on been	submitted to	MDEQ?
	Yes \square No		Request for	authorization is attached
5. Type of Oi	l Production Notice of Intent (Ch	eck all i	that apply)	
V	Initial Coverage		Re-Coverag	e for existing Coverage
	Modification with Public Notice		Modification	n without Public Notice
	Update Compliance Plan			

EMISSIONS EQUIPMENT AT A STATIETTE MINOR SOURCE		
Facility (Agency Interest) Information	Section OPGP - A	
6. Equipment List (Check all that apply)		

Complete supporting emission calculations must be included for each potential emission unit selected below.

☑ Heater Treater. Include a completed <u>Section OPGP-C Form</u> for each unit.

- ☑ Condensation Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.
- ☑ Water Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.
- ☐ Internal Combustion Engine. Include a completed <u>Section OPGP-D Form</u> for each unit.
- ☑ Flare. Include a completed <u>Section OPGP-F Form</u> for each unit.
- ☑ Oil Truck Loading (Section OPGP-B Form)
- ☐ Component Fugitive Emissions (Section OPGP-B Form)
- ☑ Other: Pneumatic Controllers, Well Gas, Heater Treater Flash Gas, Blowcase Vessel

7. Process/Product Details

Maximum Anticipated Well(s) Production for Faciltiy:

Produced Material	Throughput	Units
Gas	0.1	MMCF/day
Oil	460	barrels/day
Water	600	barrels/day
Other (Specify)		

Maximum Anticipated Throughput for Principal Product(s) (as applicable):

Produced Material	Throughput	Units
Flared Gas	0.1	MMCF/day
Oil	460	barrels/day
Water	600	barrels/day
Other (Specify)		

8. Zoning

A.	Is the facility (either existing or proposed) located in accordance with any applicable city
	and/or county zoning ordinances? If no, please explain
	Voc

В.	Is the facility (either existing or proposed) required to obtain any zoning variance to
	locate/expand the facility at this site? If yes, please explain.
	No

C. Is the required USGS quadrangle map or equivalent attached?	✓	Yes		No
--	----------	-----	--	----

Facility (Agency Interest) Information

Section OPGP - A

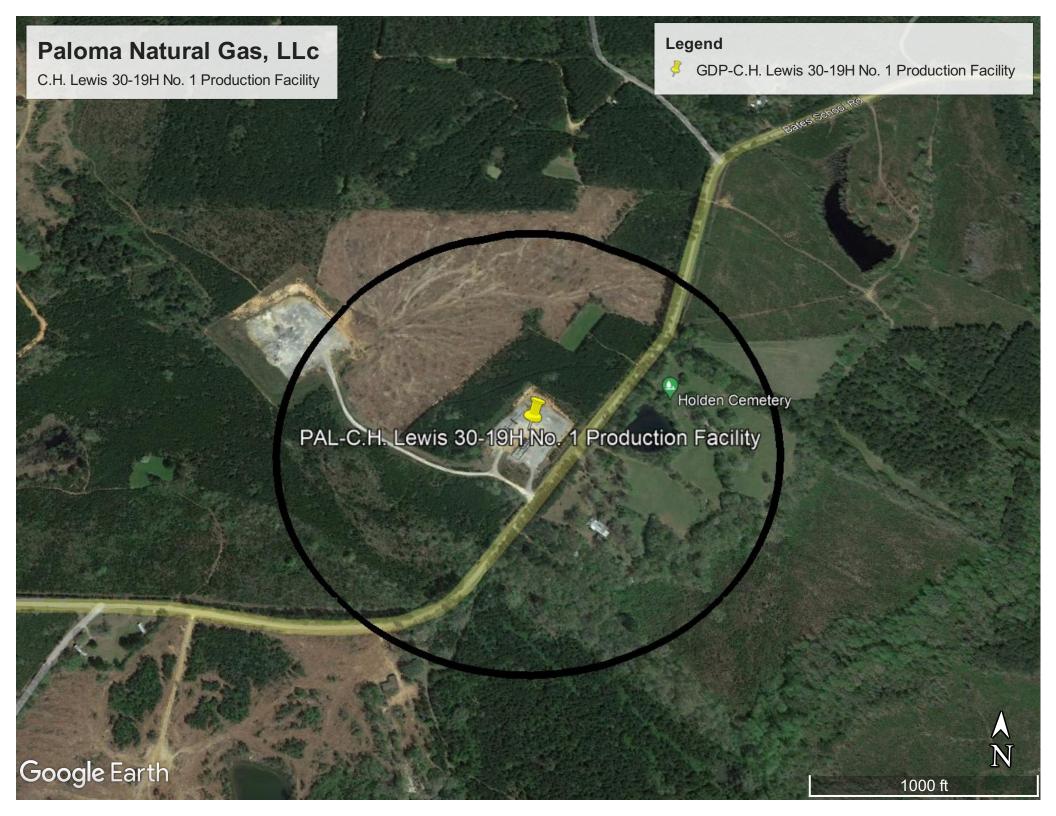
9. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

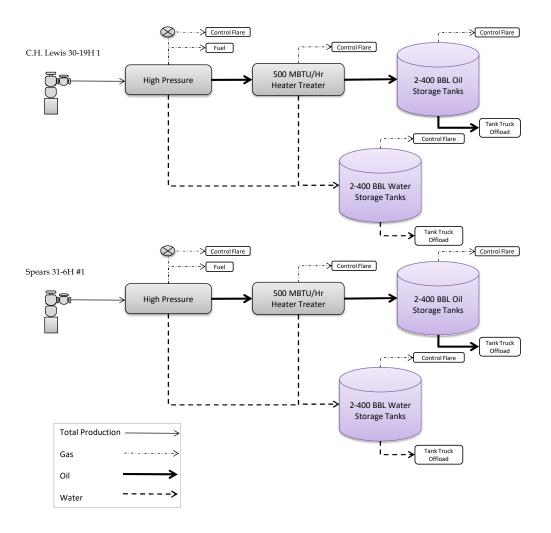
10. Address and Locati	on of Facility Records		
Dl:1 A 11	<u> </u>		
Physical Address	001 I		
1. Street Address:	801 Louisiana Street, Suite 700		
2. City: Houston		_	TX
4. County: Harris		5. Zip Code:	77002
6. Telephone No.:	918-261-1014	7. Fax No.:	
-		_	

Facility (Agency Interest) Inform	ation
-----------------------------------	-------


Section OPGP - A

4	4									
н	- 1	. (Δī	180	n ff 1	0	0	fFΒ.	1	m

The Form must be signed by a Responsible Official as defined in 11 Miss. Admin. Code Pt. 2, R. 2.1.C.(24).


I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Joel B Latt	10-27-22
Signature of Responsible Official/DAR	Date
Joel Scott Printed Name	10-27-22 Date

Simplified Process Flow Diagram

C.H. Lewis 30-19H No. 1 Production Facility

The facility is used as a typical oil & gas production facility designed to treat and handle production from the C. H. Lewis 30-19H 1 and the Spears 31-6H #1 well completions. Production from the wells is routed to individual high pressure separators. Gas from the high pressure separators is used as facility fuel with any relief routed to a control flare for combustion. Oil from the high pressure separators is routed to individual heater treaters for further separation. Water from the high pressure separators, along with any water from the heater treaters, is routed to on-site tanks for storage until hauled off-site by tank truck for disposal. Off-gas from the heater treaters is routed to the control flare for combustion. Oil from the heater treaters is routed to on-site tanks for storage until hauled off-site by tank truck for sales. Vapors from the storage tanks are routed to the control flare for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc. One (1) gasoline-fired circulating pump engine, one (1) chemical storage tank, one (1) lube oil tank, and two (2) blowcase vessels are also located at this facility. Emissions from these and any related sources are included within this application.

Section OPGP-B.1: Maximum Uncontrolled Emissions (under normal operating conditions) MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section OGP-B.3 and GHGs in Section OGP-B.4. Emission Point numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

Emission Point ID	TSP ¹	(PM)	PM	-10 ¹	PM-	-2.5^{1}	S	O_2	N	Ox	C	O	V	OC	TF	RS^2	Le	ad	Total	HAPs
Emission Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1-13-HT-BS	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.03	0.15	0.03	0.13	0.00	0.01	-	-	-	-	-	-
3-13-ICE-ES	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.11	0.49	0.08	0.33	0.11	0.49	-	-	-	-	-	-
4a-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	10.01	43.86	-	-	-	-	0.25	1.12
4b-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	10.01	43.86	-	-	-	-	0.25	1.12
4c-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	10.92	47.80	-	-	-	-	0.28	1.23
4d-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	10.92	47.80	-	-	-	-	0.28	1.23
4e-13-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.40	1.74	-	-	-	-	0.02	0.11
4f-13-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.40	1.74	-	-	-	-	0.02	0.11
4g-14-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.40	1.74	-	-	-	-	0.02	0.11
4h-14-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.40	1.74	-	-	-	-	0.02	0.11
5-13-F	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
6-13-FG	-	-	-	-	-	-	-	-	-	-	-	-	216.32	947.50	-	-	-	-	12.40	54.29
8-13-HT-FG	-	-	-	-	-	-	-	-	-	-	-	-	14.81	64.88	-	-	-	-	0.46	2.01
10-13-BV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.05	-	-	-	-	0.00	0.00
11-13-BV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.05	-	-	-	-	0.00	0.00
17-13-LL	-	-	-	-	-	-	-	-	-	-	-	-	28.15	13.13	-	-	-	-	2.55	1.19
18-13-PC	-	-	-	-	-	-	1	-	-	-	-	-	2.02	8.86	-	-	-	-	0.12	0.51
19-13-FE	-	-	-	-	-	-	-	-	-	-	-	-	0.98	4.29	-	-	-	-	0.05	0.22
20-13-CST	-	-	-	-	-	-	1	-	-	-	-	-	0.00	0.00	-	-	-	-	0.00	0.00
21-13-LOT	-	-	-	-	-	-	1	-	-	-	-	-	0.00	0.00	-	-	-	-	0.00	0.00
22-14-HT-BS	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.03	0.15	0.03	0.13	0.00	0.01	-	-	-	-	-	-
Totals	0.01	0.05	0.01	0.05	0.01	0.05	0.01	0.03	0.17	0.79	0.14	0.59	305.87	1229.55	0.00	0.00	0.00	0.00	16.72	63.36

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² **TRS:** Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section OPGP-B.2: Proposed Allowable Emissions

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

Emission Point ID	TS	SP ¹	PM	[10 ¹	PM	2.5 ¹	S	O_2	N	Ox	C	0	V(OC	Tl	RS	Le	ead
Emission I omt ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1-13-HT-BS	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.03	0.15	0.03	0.13	0.00	0.01	-	-	-	-
3-13-ICE-ES	0.01	0.03	0.01	0.03	0.01	0.03	0.01	0.03	0.11	0.49	0.08	0.33	0.11	0.49	-	-	-	-
4a-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.12	0.51	-	-	-	-
4b-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.12	0.51	-	-	-	-
4c-13-OST-CV	-	-	-	-	-	-	ı	-	-	-	-	-	0.14	0.59	ı	-	-	-
4d-13-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.14	0.59	-	-	-	-
4e-13-WST-CV	-	-	-	-	1	-	1	-	-	-	-	-	0.01	0.03	-	-	-	-
4f-13-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	-	-	-	-
4g-14-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	-	-	-	-
4h-14-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.03	-	-	-	-
5-13-F	0.06	0.25	0.06	0.25	0.06	0.25	0.00	0.00	1.27	5.55	2.53	11.08	5.34	23.38	-	-	-	-
10-13-BV	-	-	-	-	-	-	-	-	-	-	-	-	0.01	0.05	-	-	-	-
11-13-BV	1	-	-	-	1	-	1	-	1	1	-	-	0.01	0.05	-	-	1	-
17-13-LL	1	-	-	-	1	-	1	-	1	1	1	-	28.15	13.13	1	-	1	-
18-13-PC	-	-	-	-	-	-	-	-	-	-	-	-	2.02	8.86	-	-	-	-
19-13-FE	-	-	-	-	-	-	-	-	-	-	-	-	0.98	4.29	-	-	-	-
20-13-CST	-	-	-	-	1	-	1	-	-	-	-	-	0.00	0.00	-	-	-	-
21-13-LOT	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.00	-	-	-	-
22-14-HT-BS	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.00	0.03	0.15	0.03	0.13	0.00	0.01	ı	-	-	-
Totals	0.07	0.30	0.07	0.30	0.07	0.30	0.01	0.03	1.44	6.34	2.67	11.67	37.18	52.59	0.00	0.00	0.00	0.00

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² **TRS:** Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section OPGP-B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.01 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission Point ID	Total	HAPs	1,3-Bu	tadiene	2,2,4-Tr pen	imethyl- tane	Acetal	dehyde	Acr	olein	Ben	zene	Ethylb	oenzene	Forma	ldehyde	n-He	exane	Met	hanol	Tole	uene	Xyl	enes
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
1-13-HT-BS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-13-ICE-ES	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4a-13-OST-CV	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.01	-	-	-	-	-	-
4b-13-OST-CV	0.00	0.01	1	-	-	-	1	-	-	-	1	1	-	-	-	1	0.00	0.01	-	-	-	-	-	-
4c-13-OST-CV	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.01	-	-	-	-	-	-
4d-13-OST-CV	0.00	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00	0.01	-	-	-	-	-	-
4e-13-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4f-13-WST-CV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4g-14-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4h-14-OST-CV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5-13-F	0.28	1.20	-	-	0.11	0.48	-	-	-	-	0.02	0.07	0.01	0.03	-	-	0.12	0.53	-	-	0.01	0.06	0.01	0.03
10-13-BV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
11-13-BV	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
17-13-LL	2.55	1.19	-	-	-	-	-	-	-	-	0.03	0.01	-	-	-	-	2.52	1.18	-	-	-	-	-	-
18-13-PC	0.12	0.50	-	-	0.05	0.21	-	-	-	-	0.01	0.03	0.00	0.01	-	-	0.05	0.22	-	-	0.01	0.02	0.00	0.01
19-13-FE	0.04	0.22	-	-	0.02	0.09	-	-	-	-	0.00	0.01	0.00	0.00	-	-	0.02	0.10	-	-	0.00	0.01	0.00	0.01
20-13-CST	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21-13-LOT	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22-14-HT-BS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals:	2.99	3.15	0.00	0.00	0.18	0.78	0.00	0.00	0.00	0.00	0.06	0.12	0.01	0.04	0.00	0.00	2.71	2.07	0.00	0.00	0.02	0.09	0.01	0.05

Section OPGP-B.4: Greenhouse Gas Emissions

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr			Total GHG Mass Basis ton/yr ⁵	Total CO ₂ e ton/yr ⁶
Emission Point ID	GWPs 1	1	1	298	25	22,800	footnote 4				
1-13-HT-BS	mass GHG	319.91	0.00	0.00	0.00	0.00	0.00			319.91	
1-13-Н1-В5	CO ₂ e	319.91	0.00	0.00	0.00	0.00	0.00				319.91
3-13-ICE-ES	mass GHG	57.67	0.00	0.00	0.00	0.00	0.00			57.67	
3-13-ICE-ES	CO ₂ e	57.67	0.00	0.00	0.00	0.00	0.00				57.67
4a-13-OST-CV	mass GHG	0.04	0.00	0.00	0.08	0.00	0.00			0.12	
4a-13-031-CV	CO ₂ e	0.04	0.00	0.00	2.00	0.00	0.00				2.04
4b-13-OST-CV	mass GHG	0.04	0.00	0.00	0.08	0.00	0.00			0.12	
40-13-031-CV	CO ₂ e	0.04	0.00	0.00	2.00	0.00	0.00				2.04
4c-13-OST-CV	mass GHG	0.04	0.00	0.00	0.09	0.00	0.00			0.13	
4C-13-OS1-CV	CO ₂ e	0.04	0.00	0.00	2.25	0.00	0.00				2.29
4d-13-OST-CV	mass GHG	0.04	0.00	0.00	0.09	0.00	0.00			0.13	
4u-13-031-CV	CO ₂ e	0.04	0.00	0.00	2.25	0.00	0.00				2.29
4e-13-WST-CV	mass GHG	0.00	0.00	0.00	0.01	0.00	0.00			0.01	
40-15-W51-CV	CO ₂ e	0.00	0.00	0.00	0.25	0.00	0.00				0.25
4f-13-WST-CV	mass GHG	0.00	0.00	0.00	0.01	0.00	0.00			0.01	
41-13-W31-CV	CO ₂ e	0.00	0.00	0.00	0.25	0.00	0.00				0.25
4g-14-OST-CV	mass GHG	0.00	0.00	0.00	0.01	0.00	0.00			0.01	
4g-14-031-CV	CO ₂ e	0.00	0.00	0.00	0.25	0.00	0.00				0.25
4h-14-OST-CV	mass GHG	0.00	0.00	0.00	0.01	0.00	0.00			0.01	
411-14-051-61	CO ₂ e	0.00	0.00	0.00	0.25	0.00	0.00				0.25
5-13-F	mass GHG	4854.31	0.00	0.01	8.41	0.00	0.00			4862.73	
3-10-1	CO ₂ e	4854.31	0.00	2.98	210.25	0.00	0.00				5067.54
10-13-BV	mass GHG	0.01	0.00	0.00	0.02	0.00	0.00			0.03	
10-13-B v	CO ₂ e	0.01	0.00	0.00	0.50	0.00	0.00				0.51
11-13-BV	mass GHG	0.01	0.00	0.00	0.02	0.00	0.00			0.03	
11-15-6	CO ₂ e	0.01	0.00	0.00	0.50	0.00	0.00				0.51
17-13-LL	mass GHG	0.00	0.00	0.00	0.93	0.00	0.00			0.93	
17-13-EE	CO ₂ e	0.00	0.00	0.00	23.25	0.00	0.00				23.25
18-13-PC	mass GHG	1.18	0.00	0.00	3.43	0.00	0.00			4.61	
10 10 1 0	CO ₂ e	1.18	0.00	0.00	85.75	0.00	0.00				86.93
19-13-FE	mass GHG	0.52	0.00	0.00	1.50	0.00	0.00			2.02	
.,	CO ₂ e	0.52	0.00	0.00	37.50	0.00	0.00				38.02
20-13-CST	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00			0.00	
20 10 002	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00				0.00
21-13-LOT	mass GHG	0.00	0.00	0.00	0.00	0.00	0.00			0.00	
	CO ₂ e	0.00	0.00	0.00	0.00	0.00	0.00				0.00
22-14-HT-BS	mass GHG	319.91	0.00	0.00	0.00	0.00	0.00			319.91	
	CO ₂ e	319.91	0.00	0.00	0.00	0.00	0.00				319.91
FACILITY	mass GHG	5553.68	0.00	0.01	14.69	0.00	0.00			5568.38	
TOTAL	CO ₂ e	5553.68	0.00	2.98	367.25	0.00	0.00				5923.91

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or micro-organisms.

³ For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a mass basis is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO₂ in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO₂e in this total.

Section OPGP-B.5: Stack Parameters and Exit Conditions MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Emission Point numbering must be consistent throughout the application package.

Emission Point ID	Orientation (H-Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume		ic Position utes/seconds)
	V=Vertical)	(Yes or No)	(ft)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
1-13-HT-BS	V	No	15	375±	500	0.5	18.7	0	31 06 04.00	90 38 31.81
3-13-ICE-ES	V	No	10	375±	1000	0.5	4.33	0	31 06 04.00	90 38 31.81
4a-13-OST-CV	V	No	22	375±	70	0.2	0.01	0	31 06 04.00	90 38 31.81
4b-13-OST-CV	V	No	22	375±	70	0.2	0.01	0	31 06 04.00	90 38 31.81
4c-13-OST-CV	V	No	22	375±	70	0.2	0.01	0	31 06 04.00	90 38 31.81
4d-13-OST-CV	V	No	22	375±	70	0.2	0.01	0	31 06 04.00	90 38 31.81
4e-13-WST-CV	V	No	22	375±	70	0.2	< 0.01	0	31 06 04.00	90 38 31.81
4f-13-WST-CV	V	No	22	375±	70	0.2	< 0.01	0	31 06 04.00	90 38 31.81
4g-14-OST-CV	V	No	22	375±	70	0.2	< 0.01	0	31 06 04.00	90 38 31.81
4h-14-OST-CV	V	No	22	375±	70	0.2	< 0.01	0	31 06 04.00	90 38 31.81
5-13-F	V	No	30	375±	1500	0.5	389	0	31 06 04.00	90 38 31.81
10-13-BV	V	No	2	375±	70	0.02	0.20	0	31 06 04.00	90 38 31.81
11-13-BV	V	No	2	375±	70	0.02	0.20	0	31 06 04.00	90 38 31.81
17-13-LL	V	No	5	375±	70	0.3	0.93	0	31 06 04.00	90 38 31.81
20-13-CST	Н	No	5	375±	70	0.2	< 0.01	0	31 06 04.00	90 38 31.81
21-13-LOT	Н	No	5	375±	70	0.2	< 0.01	0	31 06 04.00	90 38 31.81
22-14-HT-BS	V	No	15	375±	500	0.5	18.7	0	31 06 04.00	90 38 31.81

¹ A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

Paloma Natural Gas, LLC C.H. Lewis 30-19H No. 1 Production Facility Amite County, MS

Section B.6: EMISSION POINT SOURCE LIST

						Oper	ating Scheo	dule:
Facility Ref. No.:	MDEQ EPN:	Footnote:	Emission Point Description:	Routes To:	Operating Rate/Capacity	Hrs/Day or (Hrs/Yr)	Days/Wk	Wks/Yr
1-13-HT-BS	AA-005		500 MBTU/Hr Heater Treater-Burner Stack		500 MBTU/Hr	24	7	52.143
3-13-ICE-ES	AA-004		Internal Combustion Engine-Exhaust Stack (Honda GX270; Circulating Pump)		8.5 HP	24	7	52.143
4a-13-OST-CV	AA-011	a	400 BBL Oil Storage Tank-Common Vent	5-13-F	40,150 BOPY	24	7	52.143
4b-13-OST-CV	AA-012	a	400 BBL Oil Storage Tank-Common Vent	5-13-F	40,150 BOPY	24	7	52.143
4c-13-OST-CV	AA-013	a	400 BBL Oil Storage Tank-Common Vent	5-13-F	43,800 BOPY	24	7	52.143
4d-13-OST-CV	AA-014	a	400 BBL Oil Storage Tank-Common Vent	5-13-F	43,800 BOPY	24	7	52.143
4e-13-WST-CV	AA-015	a	400 BBL Water Storage Tank-Common Vent	5-13-F	54,750 BWPY	24	7	52.143
4f-13-WST-CV	AA-016	a	400 BBL Water Storage Tank-Common Vent	5-13-F	54,750 BWPY	24	7	52.143
4g-14-OST-CV	AA-022	a	400 BBL Water Storage Tank-Common Vent	5-13-F	54,750 BWPY	24	7	52.143
4h-14-OST-CV	AA-023	a	400 BBL Water Storage Tank-Common Vent	5-13-F	54,750 BWPY	24	7	52.143
5-13-F	AA-001	b	Control Flare		45.2 MMSCF/Yr	24	7	52.143
6-13-FG	AA-027	c	Flare Gas (Well Gas Relief)	5-13-F	36.5 MMSCF/Yr	24	7	52.143
8-13-HT-FG	AA-029	d	Heater Treater-Flash Gas	5-13-F	3.77 MMSCF/Yr	24	7	52.143
10-13-BV	AA-018		Blowcase Vessel (Flare Liquids)		2,190 Gallons/Yr	24	7	52.143
11-13-BV	AA-019		Blowcase Vessel (Drip Pot)		2,190 Gallons/Yr	24	7	52.143
17-13-LL	AA-002		Loading Losses-Oil Transfer to Tank Truck		167,900 BOPY	(933)	-	-
18-13-PC	AA-010		Pneumatic Controllers		342 MSCF/Yr	24	7	52.143
19-13-FE	AA-021		Fugitive Emissions		N/A	24	7	52.143
20-13-CST	AA-006		250 Gallon Chemical Storage Tank		2,500 Gallons/Yr	24	7	52.143
21-13-LOT	AA-020		55 Gallon Lube Oil Tank		550 Gallons/Yr	24	7	52.143
22-14-HT-BS	AA-026		500 MBTU/Hr Heater Treater-Burner Stack		500 MBTU/Hr	24	7	52.143

Footnotes:

- a Vapors from this source are routed to the control flare (EPN: 5-13-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.
- b Routine emission limits for this source account for vapors from the storage tanks, well gas relief, off-gas from the heater treater, and the pilot gas stream. This source may also combust gas from the facility's pressure release system on an emergency and non-routine basis.
- c Well gas is used as fuel with any relief routed to the control flare (EPN: 5-13-F) for combustion.
- d Off-gas from this source is routed to the control flare (EPN: 5-13-F) for combustion.

Fuel Burning Equipment – External Combustion Sources

Section OPGP-C

En						•	
	nission Poin	t Description	1				
A.	Emission Poin	t Designation (Ref	. No.): AA	A-005 &	AA-026 (1-	13-HT-BS & 22-14	-HT-BS)
B.	Equipment De	scription: <u>Heate</u>	r Treater-Burne	er Stack			
C.	Manufacturer:	Unknown		D. Da	ate of Manu	facture and No.:	Unknown
Е.	Maximum Hea (higher heating		00 MMBtu/	/hr		Nominal Heat Input Capacity:	0.500 MMBtu/
G.	Use:	Line Heater		\boxtimes	Heater Tr	eater TEG	Burner
	Space H	Ieat 🗌 P	rocess Heat		Othe	er (describe):	
Н.	Heat Mechanis	sm:	Direct	\boxtimes	Indirect		
I.	Burner Type (e etc.):	e.g., forced draft, n	atural draft,				
J.	Additional Des	sign Controls (e.g.	, FGR, etc.):	N/A			
K.	Status:	Operating		Proposed	ı 🗆] Under Construc	tion
						August 20	014
Fu	el Type						
		ng table, identifyii	ng each type of	fuel and	the amount	t used. Specify the t	units for heat content
	ly usage, and yea		1 0/ 07-77		0/ + 677		
ŀ	TUEL TYPE	HEAT CONTENT	% SULFU	JR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE
Pr	oduced Field Gas	1807 BTU/ft ³	<0.000′	7	N/A	346 scf	3.03 MMscf
Plea	se list any fuel co	omponents that are	hazardous air	pollutan	s and the pe	ercentage in the fuel	<u> </u> :

Fuel Burning Equipment – Internal Combustion Engines

Section OPGP-D

<u> Եռջ</u> 1.	gines Em		oint Descrip	otion				
	A.	Emission P	oint Designation	(Ref. No.): AA-0	004 (3-13-ICE-	-ES)		
	B.	Equipment	Description (inc	luding serial number)	: Circulating	Pump Engine		
	C.	Manufactur	rer: Honda			Manufacture Godel No.:	GX270 (>7/1/08)	
	E.	Maximum 1	Heat Input (high	er heating value):	0.08	MMBtu/hr		
	F.	Rated Powe	er:	8.5 hp		kW		
	G.	Is the engin	ne an EPA-certif	led engine?	Yes	Yes or No		
	Н.	Use:	Non-eme	rgency	Eme	rgency		
	I.	Displaceme	ent per cylinder:		s 🗌	10 to <30 Liters) Liters
	J.	Engine Igni	ition Type:	Spark Igni	tion	Compression	on Ignition	
	K.	Engine Bur		4-stroke	2-strok	e 🗌 Ri	ch Burn 🔲	Lean Burn
	L.	Status:			Propos	ed 🗌 Ur	nder Construction	1
	M.			struction, or most rece anticipated constructi		n (for	August 2014	_
2.	Fue	el Type						
				ntifying each type of f		_	-	
	FU	EL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USA		
		Gasoline	20,300 BTU/l	b <0.0080	N/A	0.43 Gallons	s 3767 C	allons

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Tank Summary Section OPGP-E Emission Point Description** A. Emission Point Designation (Ref. No.): AA-011 & AA-012 (4a-13-OST-CV & 4b-13-OST-CV) B. Product(s) Stored: Produced Oil C. Operating Proposed Under Construction Status: Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: August 2014 2. Tank Data Tank Specifications: 16,800 1. Design capacity gallons 2. True vapor pressure at storage temperature: 5.395 psia @ ٥F 73.52 3. Maximum true vapor pressure (as defined in §60.111b) 6.247 psia @ 82.06 ٥F 4. Reid vapor pressure at storage temperature: 6.62 psia @ 73.52 ٥F Density of product at storage temperature: N/A lb/gal 5. Molecular weight of product vapor at storage temp. lb/lbmol 6. 50 Tank Orientation: Vertical Horizontal C. Type of Tank: Fixed Roof External Floating Roof **Internal Floating Roof** Variable Vapor Space П Pressure Other: \boxtimes D. Is the tank equipped with a Vapor Recovery System Yes No and/or flare? *If yes, describe below and include the efficiency of each.* Vapors from these sources are routed to the control flare (EPN: 5-13-F) for combustion with a combustion efficiency of 98%. E. Closest City: Meridian, MS Jackson, MS Tupelo, MS Mobile, AL

 \boxtimes

Baton Rouge, LA

Yes \square

No

Is an E&P or similar report described in Condition 5.4(5) of the

General Permit included for this tank in the Notice of Intent?

Memphis, TN

New Orleans, LA

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E** Tank Summary **Horizontal Fixed Roof Tank** Shell Length: A. feet В. Shell Diameter: feet C. Working Volume: gal Maximum Throughput: gal/yr Is the tank heated? E. Yes No F. Is the tank underground? Yes No G. Shell Color/Shade: Aluminum/Specular Aluminum/Diffuse Gray/Medium Red/Primer Gray/Light Shell Condition: Poor Good **Vertical Fixed Roof Tank** Dimensions: A. 1. Shell Height: 20 feet 12 2. Shell Diameter: feet 3. Maximum Liquid Height: 19 feet 9.5 4. Average Liquid Height: feet Working Volume: 5. 16,800 gal 6. Turnovers per year: 104.89 7. Maximum throughput: 40,150 BBLs/yr Is the tank heated? 8. Yes No Shell Characteristics: В. Shell Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse \boxtimes Gray/Medium П Red/Primer Gray/Light Shell Condition: \boxtimes 2. Good Poor **Roof Characteristics:** Roof Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Gray/Light \boxtimes Gray/Medium Red/Primer 2. **Roof Condition:** Good Poor \boxtimes Cone 3. Type: Dome 4. Height: 0.38 feet

			MINOR SOURCE	
Ta	nk	Summary		Section OPGP-E
5.	Int	ernal Floating Roof Tank		
	A.	Tank Characteristics: 1. Diameter: 2. Tank Volume: 3. Turnovers per year: 4. Maximum Throughput: 5. Number of Columns: 6. Self-Supporting Roof? 7. Effective Column Diameter:	feet gal gal/yr gal/yr Yes No 8" Diameter Pipe Dense Rust Aluminum/Specular Gray/Medium	Unknown Gunite Lining Aluminum/Diffuse Red/Primer
		10. External Shell Condition: 11. Roof Color/Shade: White/White	☐ Good ☐ Poor	num/Diffuse
	B.	Rim Seal System: 1. Primary Seal: Mechani 2. Secondary Seal: Shoe-	cal Shoe	☐ Vapor-mounted ☐ None
	C.	Deck Characteristics: 1. Deck Type: Boltec 2. Deck Fitting Category:	d	
6.	Ex	ternal Floating Roof Tank		
	A.	Tank Characteristics 1. Diameter: 2. Tank Volume: 3. Turnovers per year: 4. Maximum Throughput: 5. Internal Shell Condition: Light Rust	feet gal gal/yr Dense Rust	ite Lining

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Tank Summary Section OPGP-E External Floating Roof Tank (continued)** Tank Characteristics (continued): Paint Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Red/Primer Gray/Light Gray/Medium Paint Condition: Good Poor **Roof Characteristics** В. Roof Type: Pontoon Double Deck 2. Roof Fitting Category: Typical Detail Tank Construction and Rim-Seal System: Tank Construction: Welded Riveted 2. Primary Seal: Mechanical Shoe Liquid-mounted Vapor-mounted 3. Secondary Seal None Shoe-mounted Rim-mounted Weather shield **Pollutant Emissions Fixed Roof Emissions:** Pollutant1 Working Loss (tons/yr) Breathing Loss (tons/yr) **Total Emissions** (tons/yr) 3.97* 4.57* VOC 0.60* *It should be noted that the emissions listed above represent the fixed roof emissions prior to emissions being routed to the control flare for combustion. B. Floating Roof Emissions: Pollutant1 Withdrawal Rim Seal **Deck Fitting** Deck Seam Landing **Total Emissions** $Loss^2$ Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr)

2. Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

^{1.} All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions.

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Tank Summary Section OPGP-E Emission Point Description** A. Emission Point Designation (Ref. No.): AA-013 & AA-014 (4c-13-OST-CV & 4d-13-OST-CV) B. Product(s) Stored: Produced Oil C. Operating Proposed Under Construction Status: Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: August 2014 2. Tank Data Tank Specifications: 16,800 1. Design capacity gallons 2. True vapor pressure at storage temperature: 5.395 psia @ ٥F 73.52 3. Maximum true vapor pressure (as defined in §60.111b) 6.247 psia @ 82.06 ٥F 4. Reid vapor pressure at storage temperature: 6.62 psia @ 73.52 ٥F Density of product at storage temperature: N/A lb/gal 5. Molecular weight of product vapor at storage temp. lb/lbmol 6. 50 Tank Orientation: Vertical Horizontal C. Type of Tank: Fixed Roof External Floating Roof **Internal Floating Roof** Variable Vapor Space П Pressure Other: \boxtimes D. Is the tank equipped with a Vapor Recovery System Yes No and/or flare? *If yes, describe below and include the efficiency of each.* Vapors from these sources are routed to the control flare (EPN: 5-13-F) for combustion with a combustion efficiency of 98%. E. Closest City: Meridian, MS Jackson, MS Tupelo, MS Mobile, AL \boxtimes New Orleans, LA Memphis, TN Baton Rouge, LA

Yes \square

No

Is an E&P or similar report described in Condition 5.4(5) of the

General Permit included for this tank in the Notice of Intent?

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E** Tank Summary **Horizontal Fixed Roof Tank** Shell Length: A. feet В. Shell Diameter: feet C. Working Volume: gal Maximum Throughput: gal/yr Is the tank heated? E. Yes No F. Is the tank underground? Yes No G. Shell Color/Shade: Aluminum/Specular Aluminum/Diffuse Gray/Medium Red/Primer Gray/Light Shell Condition: Poor Good **Vertical Fixed Roof Tank** Dimensions: A. 1. Shell Height: 20 feet 12 2. Shell Diameter: feet 3. Maximum Liquid Height: 19 feet 9.5 4. Average Liquid Height: feet Working Volume: 5. 16,800 gal 6. Turnovers per year: 114.43 7. Maximum throughput: 43,800 BBLs/yr Is the tank heated? 8. Yes No Shell Characteristics: В. Shell Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse \boxtimes Gray/Medium П Red/Primer Gray/Light Shell Condition: \boxtimes 2. Good Poor **Roof Characteristics:** Roof Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Gray/Light \boxtimes Gray/Medium Red/Primer 2. **Roof Condition:** Good Poor \boxtimes Cone 3. Type: Dome 4. Height: 0.38 feet

			MINOR SOURCE	
Ta	nk	Sun	nmary	Section OPGP-E
5.	Int	erna	l Floating Roof Tank	
	A.	Tank	Characteristics:	
		1.	Diameter: feet	
		2.	Tank Volume: gal	
		3.	Turnovers per year:	
		4.	Maximum Throughput: gal/yr	
		5.	Number of Columns:	
		6. 7.	Self-Supporting Roof?	
		/.	9"x7" Built-up Column	Unknown
		8.	Internal Shell Condition:	Clikilowii
		0.	Light Rust Dense Rust	Gunite Lining
		9.	External Shell Color/Shade:	- mg
			☐ White/White ☐ Aluminum/Specular ☐	Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐	Red/Primer
		10.	External Shell Condition: Good Poor	
		10. 11.	External Shell Condition: Good Poor Roof Color/Shade:	
		11.		num/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Pr	imer
		12.	Roof Condition: Good Poor	
	D	Dim	Coal Crystams	
	В.	Kim 1.	Seal System: Primary Seal: Mechanical Shoe Liquid-mounted	☐ Vapor-mounted
		1.	Timary Sear. Weenamear Shoe Enquid-mounted	□ vapor-mounted
		2.	Secondary Seal: Shoe-mounted Rim-mounted	☐ None
	C.	Deck	Characteristics:	
		1.	Deck Type:	
			_	
		2.	Deck Fitting Category:	
6.	F _v	torn	al Floating Roof Tank	
υ.	LX	tei ii	ai Floating Roof Tank	
	A.	Tank	Characteristics	
		1.	Diameter: feet	
		2.	Tank Volume: gal	
		3.	Turnovers per year:	
		4.	Maximum Throughput: gal/yr	
		5.	Internal Shell Condition:	
			☐ Light Rust ☐ Dense Rust ☐ Guni	ite Lining

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Tank Summary Section OPGP-E External Floating Roof Tank (continued)** Tank Characteristics (continued): Paint Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Red/Primer Gray/Light Gray/Medium Paint Condition: Good Poor **Roof Characteristics** В. Roof Type: Pontoon Double Deck 2. Roof Fitting Category: Typical Detail Tank Construction and Rim-Seal System: Tank Construction: Welded Riveted 2. Primary Seal: Mechanical Shoe Liquid-mounted Vapor-mounted 3. Secondary Seal None Shoe-mounted Rim-mounted Weather shield **Pollutant Emissions Fixed Roof Emissions:** Pollutant1 Working Loss (tons/yr) Breathing Loss (tons/yr) **Total Emissions** (tons/yr) 4.33* 4.93* VOC 0.60* *It should be noted that the emissions listed above represent the fixed roof emissions prior to emissions being routed to the control flare for combustion. B. Floating Roof Emissions: Pollutant1 Withdrawal Rim Seal **Deck Fitting** Deck Seam Landing **Total Emissions** $Loss^2$ Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr)

^{1.} All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air

pollutants is provided in the OGP Application Instructions.

2. Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Section OPGP-E** Tank Summary **Emission Point Description** Emission Point Designation (Ref. No.): AA-015, AA016, AA022, & AA023 (4e-13-WST-CV, 4f-13-WST-CV, 4g-14-OST-CV, & 4h-14-OST-CV) В. Product(s) Stored: Produced Water Operating **Under Construction** C. Status: Proposed Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: August 2014 **Tank Data** Tank Specifications: 1. Design capacity 16,800 gallons True vapor pressure at storage temperature: 2. psia @ 0.409 ٥F Maximum true vapor pressure (as defined in §60.111b) 3. 0.542 psia @ 82.06 ٥F Reid vapor pressure at storage temperature: 0.409 ٥F 4. psia @ 5. Density of product at storage temperature: N/A lb/gal Molecular weight of product vapor at storage temp. 18.02 lb/lbmol 6. Tank Orientation: Vertical Horizontal В. C. Type of Tank: Fixed Roof External Floating Roof **Internal Floating Roof** Pressure Variable Vapor Space П Other:

D.		include the efficiency of each		Yes Or combustion with	a combus	No tion efficiency
E.	Closest City: ☐ Jackson, MS	☐ Meridian, MS		Tupelo, MS		Mobile, AL
	☐ New Orleans, LA	☐ Memphis, TN		Baton Rouge, L	λA	
F.	*	t described in Condition 5.4(` /	e 🗵 Y	es 🗌	No

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-E** Tank Summary **Horizontal Fixed Roof Tank** Shell Length: A. feet В. Shell Diameter: feet C. Working Volume: gal Maximum Throughput: gal/yr Is the tank heated? E. Yes No F. Is the tank underground? Yes No G. Shell Color/Shade: Aluminum/Specular Aluminum/Diffuse Gray/Medium Red/Primer Gray/Light Shell Condition: Poor Good **Vertical Fixed Roof Tank** Dimensions: A. 1. Shell Height: 20 feet 12 2. Shell Diameter: feet 3. Maximum Liquid Height: 19 feet 9.5 4. Average Liquid Height: feet Working Volume: 5. 16,800 gal 6. Turnovers per year: 143.04 7. Maximum throughput: 54,750 BBLs/yr Is the tank heated? 8. Yes No Shell Characteristics: В. Shell Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse \boxtimes Gray/Medium П Red/Primer Gray/Light Shell Condition: \boxtimes 2. Good Poor **Roof Characteristics:** Roof Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Gray/Light \boxtimes Gray/Medium Red/Primer 2. **Roof Condition:** Good Poor \boxtimes Cone 3. Type: Dome 4. Height: 0.38 feet

				MINOR SOURCE		
Ta	nk	Summary				Section OPGP-E
5.	Int	ernal Floating I	Roof Tank			
	A.	Tank Characteristics 1. Diameter: 2. Tank Volume 3. Turnovers per 4. Maximum Th 5. Number of Co 6. Self-Supportir 7. Effective Colo 9"x7" E 8. Internal Shell Light R 9. External Shell White/V	s: year: roughput: olumns: ng Roof? umn Diameter: ruilt-up Column Condition: ust Color/Shade: White	☐ Dense Rust Aluminum/Specular	feet gal gal/yr No ameter Pipe	Unknown Gunite Lining Aluminum/Diffuse
		Gray/Li 10. External Shel 11. Roof Color/Sl White/V Gray/Li 12. Roof Condition	Condition: nade: White ght	Gray/Medium Good Good Gray/Medium Good Good Pood	☐ Poor ☐ Alumin ☐ Red/Pr	Red/Primer num/Diffuse rimer
	B.	Rim Seal System:1. Primary Seal:2. Secondary Se	_	nical Shoe	quid-mounted Rim-mounted	☐ Vapor-mounted ☐ None
	C.	Deck Characteristic Deck Type: Deck Fitting (☐ Bolt	ed	Welded □ Detail	
6.	Ex	ternal Floating	Roof Tank			
	A.	Tank Characteristics 1. Diameter: 2. Tank Volume 3. Turnovers per 4. Maximum Th 5. Internal Shell Light R	: year: roughput: Condition:	☐ Dense Rust	feet gal gal/yr Guni	ite Lining

MDEO NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC **MINOR SOURCE Tank Summary Section OPGP-E External Floating Roof Tank (continued)** Tank Characteristics (continued): Paint Color/Shade: White/White Aluminum/Specular Aluminum/Diffuse Red/Primer Gray/Light Gray/Medium Paint Condition: Good Poor **Roof Characteristics** В. Roof Type: Pontoon Double Deck 2. Roof Fitting Category: Typical Detail Tank Construction and Rim-Seal System: Tank Construction: Welded Riveted 2. Primary Seal: Mechanical Shoe Liquid-mounted Vapor-mounted 3. Secondary Seal None Shoe-mounted Rim-mounted Weather shield **Pollutant Emissions Fixed Roof Emissions:** Pollutant1 Working Loss (tons/yr) Breathing Loss (tons/yr) **Total Emissions** (tons/yr) 0.15* 0.02* 0.17* VOC *It should be noted that the emissions listed above represent the fixed roof emissions prior to emissions being routed to the control flare for combustion. B. Floating Roof Emissions: Pollutant1 Withdrawal Rim Seal **Deck Fitting** Deck Seam Landing **Total Emissions** $Loss^2$ Loss Loss Loss Loss (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr) (tons/yr)

^{1.} All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance

with the OGP Application Instructions. A list of regulated air pollutants and a link to EPA's list of hazardous air pollutants is provided in the OGP Application Instructions.

^{2.} Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE **Section OPGP-F** Flare 1. **Equipment Description** Emission Point Designation (Ref. No.): AA-001 (5-13-F) B. Equipment Description (include the process(es) that the flare controls emissions from): Control flare to combust emissions from storage tanks (EPNs: 4a-13-OST-CV through 4h-14-OST-CV), well gas relief (EPN: 6-13-FG), and heater treater flash gas (EPN: 8-13-HT-FG). D. Model: C. Manufacturer: N/A N/A Operating Proposed E. Status: **Under Construction** F. Requesting a federally enforceable condition to route tank emissions to the flare. 2. **System Data** Efficiency: 98 % Controlling the following pollutant(s): VOC. HAPs % Efficiency: Controlling the following pollutant(s): Reason for different efficiency: Flare Data (if applicable): В. Non-assisted Steam-assisted Air-assisted 1. Flare type: Other: 2. Net heating value of combusted gas: 1807 Btu/scf 3. Design exit velocity: N/A ft/sec Auto-ignitor Continuous Flame 4. System: 5. Is the presence of a flare pilot flame monitored? If yes, please describe the monitoring: The presence of the flare pilot flame is continuously monitored by thermocouple.* 6. Is the auto-ignitor system monitored? | Yes No If yes, please describe the monitoring: The flare is equipped with an auto-igniter.*

^{*}Paloma will maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. Paloma will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare.

Compliance Plan Section OPGP-G

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R. 1.3.A.	August 2014	August 2014	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss Admin Code Pt. 2, R. 1.3 B.	August 2014	August 2014	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(b).	August 2014	August 2014	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(a).	August 2014	August 2014	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R.1.4.A(1).	August 2014	August 2014	N/A
3-13-ICE-ES	40 CFR 60, Subpart JJJJ	August 2014	August 2014	N/A
3-13-ICE-ES	40 CFR 63, Subpart ZZZZ	August 2014	August 2014	N/A
5-13-F	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	August 2014	August 2014	N/A

Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R. 1.3.A.	Opacity	40%	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss Admin Code Pt. 2, R. 1.3 B.	Opacity	Equivalent Opacity	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(b).	PM	$E = 0.8808*I^{-0.1667}$	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R. 1.3. D(1)(a).	PM	0.6 lb/MMBTU	N/A
1-13-HT-BS 22-14-HT-BS	11 Miss. Admin. Code Pt. 2, R.1.4.A(1).	SO_2	4.8 lbs/MMBTU	N/A
3-13-ICE-ES	40 CFR 60.4233(a)	NOx, CO, VOC	Comply with the emission standards in 40 CFR 60.4231(a) over the entire life of the engine.	If you operate and maintain the certified stationary SI internal combustion engine and control device according to the manufacturer's emission-related written instructions, you must keep records of conducted maintenance to demonstrate compliance, but no performance testing is required if you are an owner or operator. You must also meet the requirements as specified in 40 CFR part 1068, subparts A through D, as they apply to you. If you adjust engine settings according to and consistent with the manufacturer's instructions, your stationary SI internal combustion engine will not be considered out of compliance. (40 CFR 60.4243(a)(1))

Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
3-13-ICE-ES	40 CFR 60.4245(a)(1)-(3)	Owners and must keep rec 1. All noting with this supporting 2. Maintend 3. Since document that the demission required 1060, as		Recordkeeping of all notifications, documentation, and maintenance shall be maintained.
3-13-ICE-ES	40 CFR 63.6590(c)	HAPs	This engine is a new area source and meets the requirements of this subpart by meeting the requirements of 40 CFR 60-Subpart JJJJ.	N/A
5-13-F	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	$ m H_2S$	1 grain H ₂ S per 100 standard cubic feet (1 gr/100 scf)	Recordkeeping of H ₂ S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.

Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
5-13-F	11 Miss. Admin. Code Pt. 2, R.2.2.B(10).	VOC, HAPs	Flare Operating Requirements	The flare shall be operated at all times when emissions may be vented to it from the storage tanks (EPNs: 4a-13-OST-CV through 4h-14-OST-CV), well gas relief (EPN: 6-13-FG), and heater treater flash gas (EPN: 8-13-HT-FG). The flare is anticipated to provide a significant reduction in hydrocarbon emissions. Based on manufacturer's data, a minimum of 98% reduction can be expected. It should also be noted that the facility will operate the flare such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit.

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE

Compliance Plan Section OPGP-G

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
5-13-F	11 Miss. Admin. Code Pt. 2, R.2.2.B(11).	VOC, HAPs	Monitoring and recordkeeping	Paloma shall maintain a flare pilot flame or auto-igniter system at all times when emissions may be vented to the flare. Paloma will either continuously monitor & record the presence of the flare pilot flame by use of a thermocouple OR maintain & operate an auto-igniter system on the flare to ensure a flame is immediately restored when emissions are being sent to the flare. The flare shall be operated with no visible emissions as determined by EPA Method 22, except for periods not to exceed a total of five (5) minutes during any two (2) consecutive hours. Records of all visual observations/tests and corrective action shall be maintained.

This is a sample calculation for EPNs: 1-13-HT-BS & 22-14-HT-BS.

POINT SOURCE I.D. NUMBER: "See Above"

EMISSION SOURCE DESCRIPTION: 500 MBTU/Hr Heater Treater-Burner Stack

DATA:

Emission Source: External Combustion Burner

Annual Hours of Operation: 8760

Maximum Burner Rating (MMBTU/Hr): 0.500

Fuel Gas Heat of Combustion (BTU/scf): 1807

(based on an actual wet gas analysis)

Sulfur Concentration of Fuel Gas (ppmv): 7

(conservative estimate)

Fuel Source: Field Gas

Max. Hourly Fuel Consumption (SCFH): = burner rating/fuel gas heat of combustion/80% efficiency = 345.88

Max. Annual Fuel Consumption (MSCF/Yr): = hourly fuel consumption x annual hours = 3,029.91

EMISSION FACTORS:

Unless otherwise noted, emission factors taken from EPA Publication AP-42, "Compilation of Air Pollution Emission Factors" - Natural Gas Combustion (Small Boilers), refer to Section 4.0.

 SO_2 emission factor based on 100% conversion of sulfur compounds in fuel gas, using H_2S fuel composition noted above.

EMISSION CALCULATIONS:

DOLLITANT.	EMISSION FACTOR	CALCULATED EMISSION RATES:		
POLLUTANT:	(LBS/10 ⁶ SCF)	Hourly (lb/hr)	Annual (TPY)	
Particulate Matter (filterable + condensable)	7.6	0.0026	0.0115	
Sulfur Dioxide	1.182	0.0004	0.0018	
Nitrogen Oxides	100	0.0346	0.1515	
Carbon Monoxide	84	0.0291	0.1273	
Methane (excluded from VOC total)	2.3	0.0008	0.0035	
VOC	5.5	0.0019	0.0083	
TOC	11	0.0038	0.0167	
2-Methylnaphthalene (TAP)	0.0000240	0.0000	0.0000	
3-Methylchloranthrene (TAP)	0.0000018	0.0000	0.0000	
7,12-Dimethylbenz(a)anthrancene (TAP)	0.0000160	0.0000	0.0000	
Acenaphthene (TAP)	0.0000018	0.0000	0.0000	
Acenaphthylene (TAP)	0.0000018	0.0000	0.0000	

DOLL LITERATE	EMISSION FACTOR	CALCULATED EM	MISSION RATES:
POLLUTANT:	(LBS/10 ⁶ SCF)	Hourly (lb/hr)	Annual (TPY)
Anthracene (TAP)	0.0000024	0.0000	0.0000
Benz(a)anthracene (TAP)	0.0000018	0.0000	0.0000
Benzene (TAP)	0.0021000	0.0000	0.0000
Benzo(a)pyrene (TAP)	0.0000012	0.0000	0.0000
Benzo(b)fluoranthene (TAP)	0.0000018	0.0000	0.0000
Benzo(g,h,I)perylene (TAP)	0.0000012	0.0000	0.0000
Benzo(k)fluoranthene (TAP)	0.0000018	0.0000	0.0000
Chrysene (TAP)	0.0000018	0.0000	0.0000
Dibenzo(a,h)anthrancene (TAP)	0.0000012	0.0000	0.0000
Dichlorobenzene (TAP)	0.0012000	0.0000	0.0000
Fluorathene (TAP)	0.0000030	0.0000	0.0000
Fluorene (TAP)	0.0000028	0.0000	0.0000
Formaldehyde (TAP)	0.0750000	0.0000	0.0001
Hexane (TAP)	1.8000000	0.0006	0.0027
Indeno(1,2,3-cd)pyrene (TAP)	0.0000018	0.0000	0.0000
Naphthalene (TAP)	0.0006100	0.0000	0.0000
Phenanathrene (TAP)	0.0000170	0.0000	0.0000
Pyrene (TAP)	0.0000050	0.0000	0.0000
Toluene (TAP)	0.0034000	0.0000	0.0000
Arsenic (TAP)	0.0002000	0.0000	0.0000
Beryllium (TAP)	0.0000120	0.0000	0.0000
Cadmium (TAP)	0.0011000	0.0000	0.0000
Chromium (TAP)	0.0014000	0.0000	0.0000
Cobalt (TAP)	0.0000840	0.0000	0.0000
Manganese (TAP)	0.0003800	0.0000	0.0000
Mercury (TAP)	0.0002600	0.0000	0.0000
Nickel (TAP)	0.0021000	0.0000	0.0000
Selenium (TAP)	0.0000240	0.0000	0.0000
	Total TAPs	0.00	0.00
	Total VOC-TAPs	0.00	0.00
	Total Non VOC & Non TAP-HC	0.00	0.00
	Total VOC	0.00	0.01

POINT SOURCE I.D. NUMBER: 3-13-ICE-ES

EMISSION SOURCE DESCRIPTION:

Internal Combustion Engine-Exhaust Stack

(Honda GX270; Circulating Pump)

DATA:

Emission Source: Internal Combustion Engine

Make/Model: Honda/GX270

Annual Hours of Operation: 8760

Maximum HP Rating @ 3600-rpms:

(taken from manufacturer's specifications)

Brake Specific Fuel Consumption: 9000

(BTU/BHP-Hr; conservative estimate)

Max. Sulfur Concentration in Fuel Gas (%): 0.0080

Fuel Source: Gasoline

Max. Hourly Energy Output (HP-Hr) = HP Rating x 1-hour = 9

8.5

Max. Annual Energy Output (HP-Hr/Yr) = HP Rating x Annual Operating Hours = 74,460.00

EMISSION FACTORS:

NOx & VOC emission factors were taken from the emission standards established in 40 CFR 60 Subpart JJJJ & 40 CFR 1054.105(a). In accordance with the standard, the summation of NOx & HC emissions may not exceed 8.0 g/KW-Hr (6.0 g/BHP-Hr); however, for purposes of permitting, the maximum emissions are used for each pollutant.

Emission factors for all other pollutants were taken from Chapter 3.3 of AP-42, 5th Edition, Supplement B, October 1996 for Gasoline or Diesel Industrial Engines; using brake specific fuel consumption (BSFC) noted above.

EMISSION CALCULATIONS:

DOLL HIT AND	EMISSION FACTOR	CALCULATED EMISSION RATES:			
POLLUTANT:	(Grams/BHP-Hr)	Average Hourly (lb/hr):	Maximum Hourly (lb/hr):	Annual (TPY):	
PM_{10}	0.408	0.0077	0.0077	0.0335	
PM _{2.5}	0.408	0.0077	0.0077	0.0335	
Sulfur Dioxide	0.343	0.0064	0.0064	0.0281	
Nitrogen Oxides	6.0	0.1124	0.1124	0.4925	
Carbon Monoxide	4.041	0.0757	0.0757	0.3317	
Aldehydes	0.286	0.0054	0.0054	0.0235	
TOC (reported as VOC)	6.0	0.1124	0.1124	0.4925	
	Total VOC	0.11	0.11	0.49	

This is a sample calculation for EPNs: 4a-13-OST-CV & 4b-13-OST-CV.

Emission calculations shown below are presented for informational purposes only as vapors from the oil storage tanks are routed to the control flare (EPN: 5-13-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER: "See Above"

EMISSION SOURCE DESCRIPTION: 400 BBL Oil Storage Tank-Common Vent

DATA:

Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing') (C.H. Lewis 30-19H 1)
Average Daily Oil Throughput: (Annual Average; BBLD/Tank - Q _{avg})	110
Maximum Daily Oil Throughput: (BBLD/Tank - Q _{max})	220
Average VOC Working Losses - L _W (lb/yr):	7,931.402
Average VOC Standing Losses - L _S (lb/yr):	1,213.269
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to Section 4.0 for summary

Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.134/8760	=	1.18
Max. Hourly Uncontrolled THC Losses (lb/hr)	= $(Ls + (Lw * QMax ÷ Qavg)) * 1.134/8760$	=	2.21
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	5.19

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference Section 4.0.

UNCONTROLLED EMISSIONS SUMMARY:

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000	
Methane (excluded from VOC total)	6.20	0.0734	0.1371	0.3215	
Ethane (excluded from VOC total)	5.60	0.0663	0.1238	0.2904	
Propane	17.60	0.2083	0.3891	0.9126	
Iso-Butane	1.50	0.0178	0.0332	0.0778	
N-Butane	27.10	0.3208	0.5991	1.4051	
Iso-Pentane	1.50	0.0178	0.0332	0.0778	
N-Pentane	14.60	0.1728	0.3227	0.7570	
Heptane	9.20	0.1089	0.2034	0.4770	
Octane	6.90	0.0817	0.1525	0.3578	
Other NM/NE Hydrocarbons	1.80	0.0213	0.0398	0.0933	

N-Hexane (TAP)	7.90	0.0935	0.1746	0.4096
Benzene (TAP)	0.10	0.0012	0.0022	0.0052
Total Weight Percent:	100.00			
	Total TAP Emissions	0.09	0.18	0.41
	Total VOC Emissions	1.04	1.95	4.57
Total No.	n VOC & Non TAP-HC	0.14	0.26	0.61
Total 1	Hydrocarbon Emissions	1.18	2.21	5.19

DATA:

Emission Source: Flash Gas from Oil (C.H. Lewis 30-19H 1)

Flash Gas Specific Gravity: 1.5451

Average Oil Throughput: 110 (BBLD/Tank)

Maximum Oil Throughput:

(BBLD/Tank)

220

Basis of Emission Estimates: Comparable Analysis & Vasquez-Beggs Correlation

Estimates for gas volumes and composition associated with this stage of the process were derived from a laboratory test of an oil sample collected at another site under similar conditions (pressure & temperature), refer to Southern Petroleum Laboratories Report No.: 2013030083-001A in Section 4.0. This representative analysis is expected to yield a comparable VOC total but individual component values may vary from site to site. The following table shows the field conditions compared to the results from the laboratory test:

A DI Oil Cuovity @ 60°E	Process	Process Conditions				
API Oil Gravity @ 60°F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)			
Actual Facility Conditions:						
43	50	80				
43	0 80		Unknown			
Laboratory Conditions:						
44	35	120				
44	0	72	15.615			
Prorated GOR Estimate: 23.77						

Since an oil flash analysis has not been performed on an actual sample collected from this particular producing zone, the "Gas to Oil" (GOR) ratio estimated above will be compared with a value derived from the Vasquez-Beggs Correlation presented in the following table. For purposes of permitting, the higher of the two GOR values will be used within these emission estimates.

VASQUEZ-BEGGS CORRELATION							
	Stock Tank Oil API Gravity (API) =			43			
$egin{array}{c} I \ N \end{array}$	Flash Gas Specific Gravity (SG _i) =			1.5451			
P	Flash Gas Pressure Drop	(psig) (P _i)	=	50			
$egin{array}{c} U \ T \end{array}$	Pressure Vessel Temperature (°F) (T _i)			80			
	Atmospheric Pressure (P atm)			14.7			
		Dissolved Gas Gravity @ 100-psig (SG_x) (SG_i)*[1.0+0.00005912*API*T _i *Log((P_i + P_{atm})/114.		1.4670			
		Co	nstants	stants			
		°API C	ravity				
	$^{\circ}\text{API} \rightarrow$	< 30	≥ 30	Constants Used based on API Gravity			
	C1	0.0362	0.0178	0.0178			
	C2	1.0937	1.187	1.187			
	C3	25.724	23.931	23.931			
GOR =	$(C1) * (SG_x) * ((P_i + P_{atm})^{C2}) * e^{[(C3)(API)/(T_i + A_{atm})^{C2}]}$	60)] =	24.77	scf/bbl			
refer to "Corre	refer to "Correlations for Fluid Physical Property Prediction" Journal of Petroleum Technology, Society of Petroleum Engineers, 1980						

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	=	Oil Rate * GOR	=	113.53
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	13.40
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Avg. Emissions * Ratio of Max. Oil Rate to Avg. Oil Rate	=	26.80
Annual Potential Uncontrolled Flash Emissions (TPY)	=	Hourly * 8760/2000	=	58.69

SPECIATION FACTORS:

Speciation of the flash gas mixture was taken from the referenced laboratory results; refer to Southern Petroleum Laboratories Report No.: 2013030083-001A in Section 4.0.

UNCONTROLLED EMISSIONS SUMMARY:

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	6.129	0.8214	1.6428	3.5972	
Methane (excluded from VOC total)	10.444	1.3997	2.7994	6.1298	
Ethane (excluded from VOC total)	16.485	2.2093	4.4185	9.6754	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	30.383	4.0718	8.1437	17.8324	
Iso-Butane	5.739	0.7691	1.5382	3.3683	
N-Butane	16.029	2.1482	4.2963	9.4077	
Iso-Pentane	5.367	0.7193	1.4385	3.1500	
N-Pentane	4.369	0.5855	1.1710	2.5643	
Iso-Hexane	1.499	0.2009	0.4018	0.8798	
N-Hexane (TAP)	0.862	0.1155	0.2310	0.5059	

Methylcyclopentane	0.000	0.0000	0.0000	0.0000
Benzene (TAP)	0.179	0.0240	0.0480	0.1051
Cyclohexane	0.000	0.0000	0.0000	0.0000
Heptanes	1.271	0.1703	0.3407	0.7460
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.111	0.0149	0.0298	0.0651
2,2,4-Trimethylpentane (TAP)	0.008	0.0011	0.0021	0.0047
Octanes	0.500	0.0670	0.1340	0.2935
Ethylbenzene (TAP)	0.009	0.0012	0.0024	0.0053
Xylenes (TAP)	0.045	0.0061	0.0122	0.0266
Nonanes	0.102	0.0137	0.0273	0.0599
Decanes Plus	0.468	0.0628	0.1255	0.2749
Total Weight Percent:	100.000			
	Total TAP Emissions	0.16	0.33	0.71
Total VOC Emissions		8.97	17.94	39.29
Total Non VOC & Non TAP-HC		3.61	7.22	15.81
	Total Emissions	13.40	26.80	58.69

Uncontrolled VOC Emission Total (TPY)

Storage Vapors + Oil Flash

43.86

DATA:

Emission Source: Losses When Opening Thief Hatches

Specific Gravity of Gas: 1.5451

Maximum Thief Hatch Venting (Hrs/Yr)
(Under Normal/Routine Operating Conditions)

105

Number of Tanks in Vent System: 2

Max. Minutes a Hatch is Opened in a Single Hour: 15

Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates) 7.25

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.17
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	7.25
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.76

EMISSION SUMMARY (based on the above referenced oil flash analysis): **CALCULATED EMISSION RATES POLLUTANT: Weight Percent** Average Maximum Annual (TPY) Hourly (lb/hr) Hourly (lb/hr) 0.000 0.000Nitrogen (excluded from VOC total) 0.0000.0006.129 0.011 0.047 Carbon Dioxide (excluded from VOC total) 0.444 10.444 0.018 0.757 0.080 Methane (excluded from VOC total) Ethane (excluded from VOC total) 16.485 0.029 1.195 0.126 Hydrogen Sulfide (excluded from VOC total) 0.000 0.000 0.000 0.00030.383 0.053 2.203 0.231 Propane Iso-Butane 5.739 0.010 0.416 0.044

N-Butane	16.029	0.028	1.162	0.122
Iso-Pentane	5.367	0.009	0.389	0.041
N-Pentane	4.369	0.008	0.317	0.033
Iso-Hexane	1.499	0.003	0.109	0.011
N-Hexane (TAP)	0.862	0.001	0.062	0.007
Methylcyclopentane	0.000	0.000	0.000	0.000
Benzene (TAP)	0.179	0.000	0.013	0.001
Cyclohexane	0.000	0.000	0.000	0.000
Heptanes	1.271	0.002	0.092	0.010
Methylcyclohexane	0.000	0.000	0.000	0.000
Toluene (TAP)	0.111	0.000	0.008	0.001
2,2,4-Trimethylpentane (TAP)	0.008	0.000	0.001	0.000
Octanes	0.500	0.001	0.036	0.004
Ethylbenzene (TAP)	0.009	0.000	0.001	0.000
Xylenes (TAP)	0.045	0.000	0.003	0.000
Nonanes	0.102	0.000	0.007	0.001
Decanes Plus	0.468	0.001	0.034	0.004
Other NM/NE HC	0.000	0.000	0.000	0.000
Total Weight Percent:	100.000			
	Total TAP Emissions	0.00	0.09	0.01
	Total VOC Emissions		4.85	0.51
Total Nor	Total Non VOC & Non TAP-HC		1.95	0.21
	Total Emissions	0.17	7.25	0.76

This is a sample calculation for EPNs: 4c-13-OST-CV & 4d-13-OST-CV.

Emission calculations shown below are presented for informational purposes only as vapors from the oil storage tanks are routed to the control flare (EPN: 5-13-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER: "See Above"

EMISSION SOURCE DESCRIPTION: 400 BBL Oil Storage Tank-Common Vent

DATA:

Emission Source:	Crude Oil Storage Vapors ('Working' & 'Standing') (Spears 31-6H #1)
Average Daily Oil Throughput: (Annual Average; BBLD/Tank - Q _{avg})	120
Maximum Daily Oil Throughput: (BBLD/Tank - Q _{max})	240
Average VOC Working Losses - L _W (lb/yr):	8,652.439
Average VOC Standing Losses - L _S (lb/yr):	1,213.269
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to Section 4.0 for summary

Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (Lw + Ls) * 1.134/8760	=	1.28
Max. Hourly Uncontrolled THC Losses (lb/hr)	= $(Ls + (Lw * QMax ÷ Qavg)) * 1.134/8760$	=	2.40
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	5.59

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference Section 4.0.

UNCONTROLLED EMISSIONS SUMMARY:

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000	
Methane (excluded from VOC total)	6.20	0.0792	0.1486	0.3468	
Ethane (excluded from VOC total)	5.60	0.0715	0.1342	0.3133	
Propane	17.60	0.2248	0.4219	0.9845	
Iso-Butane	1.50	0.0192	0.0360	0.0839	
N-Butane	27.10	0.3461	0.6496	1.5159	
Iso-Pentane	1.50	0.0192	0.0360	0.0839	
N-Pentane	14.60	0.1865	0.3500	0.8167	
Heptane	9.20	0.1175	0.2205	0.5146	
Octane	6.90	0.0881	0.1654	0.3860	
Other NM/NE Hydrocarbons	1.80	0.0230	0.0431	0.1007	

N-Hexane (TAP)	7.90	0.1009	0.1894	0.4419
Benzene (TAP)	0.10	0.0013	0.0024	0.0056
Total Weight Percent:	100.00			
	Total TAP Emissions	0.10	0.19	0.45
	Total VOC Emissions	1.13	2.11	4.93
Total Nor	n VOC & Non TAP-HC	0.15	0.28	0.66
Total I	Hydrocarbon Emissions	1.28	2.40	5.59

DATA:

Emission Source: Flash Gas from Oil (Spears 31-6H #1)

Flash Gas Specific Gravity: 1.5451

Average Oil Throughput: 120

(BBLD/Tank)

Maximum Oil Throughput: (BBLD/Tank)

Basis of Emission Estimates:

Comparable Analysis & Vasquez-Beggs Correlation

Estimates for gas volumes and composition associated with this stage of the process were derived from a laboratory test of an oil sample collected at another site under similar conditions (pressure & temperature), refer to Southern Petroleum Laboratories Report No.: 2013030083-0014 in Section 4.0. This representative analysis is expected to yield a comparable VOC total but individual component values may vary from site to site. The following table shows the field conditions compared to the results from the laboratory test:

240

A DI Oil Cuovity @ 60°E	Process (Gas/Oil Ratio				
API Oil Gravity @ 60°F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)			
Actual Facility Conditions:						
43	50	80				
	0	80	Unknown			
Laboratory Conditions:						
44	35	120				
	0	72	15.615			
	23.77					

Since an oil flash analysis has not been performed on an actual sample collected from this particular producing zone, the "Gas to Oil" (GOR) ratio estimated above will be compared with a value derived from the Vasquez-Beggs Correlation presented in the following table. For purposes of permitting, the higher of the two GOR values will be used within these emission estimates.

	VASQUEZ-I	BEGGS C	ORRELAT	TION			
	Stock Tank Oil API G	ravity (API)) =	43			
$I \\ N$	Flash Gas Specific Gr	ravity (SG _i) =	1.5451			
P	Flash Gas Pressure Drop	(psig) (P _i)	=	50			
$egin{array}{c} U \ T \end{array}$	Pressure Vessel Temperature (°F) (T_i)			80			
1	Atmospheric Pre	ssure (P atm.) =	14.7			
	Dissolved Gas Gravity @ 100-p (SG _i)*[1.0+0.00005912*API*T _i *Log([i			1.4670			
		Co	nstants				
		°API G	ravity				
	$^{\circ}\text{API} \rightarrow$	< 30	≥ 30	Constants Used based on API Gravity			
	C1	0.0362	0.0178	0.0178			
	C2	1.0937	1.187	1.187			
	C3	25.724	23.931	23.931			
GOR =	$(C1) * (SG_x) * ((P_i + P_{atm})^{C2}) * e^{ (C3)(API)/(T_i + 4C_i) }$	50)] =	24.77	scf/bbl			

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	=	Oil Rate * GOR	=	123.85
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	14.62
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Avg. Emissions * Ratio of Max. Oil Rate to Avg. Oil Rate	=	29.24
Annual Potential Uncontrolled Flash Emissions (TPY)	=	Hourly * 8760/2000	=	64.04

SPECIATION FACTORS:

Speciation of the flash gas mixture was taken from the referenced laboratory results; refer to Southern Petroleum Laboratories Report No.: 2013030083-001A in Section 4.0.

UNCONTROLLED EMISSIONS SUMMARY:

		CALCULATED EMISSION RATES			
POLLUTANT:	POLLUTANT: Weight Percent		Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Carbon Dioxide (excluded from VOC total)	6.129	0.8961	1.7921	3.9247	
Methane (excluded from VOC total)	10.444	1.5269	3.0538	6.6879	
Ethane (excluded from VOC total)	16.485	2.4101	4.8202	10.5563	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	30.383	4.4420	8.8840	19.4559	
Iso-Butane	5.739	0.8390	1.6781	3.6750	
N-Butane	16.029	2.3434	4.6869	10.2643	
Iso-Pentane	5.367	0.7847	1.5693	3.4368	
N-Pentane	4.369	0.6387	1.2775	2.7977	
Iso-Hexane	1.499	0.2192	0.4383	0.9599	
N-Hexane (TAP)	0.862	0.1260	0.2520	0.5520	
Methylcyclopentane	0.000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.179	0.0262	0.0523	0.1146	

Cyclohexane	0.000	0.0000	0.0000	0.0000
Heptanes	1.271	0.1858	0.3716	0.8139
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.111	0.0162	0.0325	0.0711
2,2,4-Trimethylpentane (TAP)	0.008	0.0012	0.0023	0.0051
Octanes	0.500	0.0731	0.1462	0.3202
Ethylbenzene (TAP)	0.009	0.0013	0.0026	0.0058
Xylenes (TAP)	0.045	0.0066	0.0133	0.0291
Nonanes	0.102	0.0149	0.0298	0.0653
Decanes Plus	0.468	0.0685	0.1370	0.2999
Total Weight Percent:	100.000			
	Total TAP Emissions	0.18	0.36	0.78
Total VOC Emissions		9.79	19.57	42.87
Total Non VOC & Non TAP-HC		3.94	7.87	17.24
	Total Emissions	14.62	29.24	64.04

Uncontrolled VOC Emission Total (TPY)

Storage Vapors + Oil Flash

47.80

DATA:

Emission Source: Losses When Opening Thief Hatches

Specific Gravity of Gas: 1.5451

Maximum Thief Hatch Venting (Hrs/Yr)
(Under Normal/Routine Operating Conditions)

112

Number of Tanks in Vent System: 2

Max. Minutes a Hatch is Opened in a Single Hour: 15

Maximum Hourly Emission Rate (lb/hr): (from preceding tank emission estimates) 7.91

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.20
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	7.91
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.89

EMISSION SUMMARY (based on the above referenced oil flash analysis): **CALCULATED EMISSION RATES POLLUTANT:** Weight Percent Average Maximum Annual (TPY) Hourly (lb/hr) Hourly (lb/hr) 0.000 Nitrogen (excluded from VOC total) 0.0000.0000.000 Carbon Dioxide (excluded from VOC total) 6.129 0.012 0.485 0.054 10.444 0.093 Methane (excluded from VOC total) 0.021 0.826 Ethane (excluded from VOC total) 16.485 0.033 1.304 0.1460.000 0.000 0.000 0.000 Hydrogen Sulfide (excluded from VOC total) 30.383 0.062 2.403 0.269 Propane Iso-Butane 5.739 0.012 0.051 0.454 N-Butane 16.029 0.033 1.268 0.142 Iso-Pentane 5.367 0.011 0.425 0.048

4.369	0.009	0.346	0.039
1.499	0.003	0.119	0.013
0.862	0.002	0.068	0.008
0.000	0.000	0.000	0.000
0.179	0.000	0.014	0.002
0.000	0.000	0.000	0.000
1.271	0.003	0.101	0.011
0.000	0.000	0.000	0.000
0.111	0.000	0.009	0.001
0.008	0.000	0.001	0.000
0.500	0.001	0.040	0.004
0.009	0.000	0.001	0.000
0.045	0.000	0.004	0.000
0.102	0.000	0.008	0.001
0.468	0.001	0.037	0.004
0.000	0.000	0.000	0.000
100.000			
Total TAP Emissions	0.00	0.10	0.01
Total VOC Emissions		5.30	0.59
Total Non VOC & Non TAP-HC		2.13	0.24
Total Emissions	0.20	7.91	0.89
	1.499 0.862 0.000 0.179 0.000 1.271 0.000 0.111 0.008 0.500 0.009 0.045 0.102 0.468 0.000 100.000 Total TAP Emissions Total VOC & Non TAP-HC	1.499 0.003 0.862 0.002 0.000 0.000 0.179 0.000 0.000 0.000 1.271 0.003 0.000 0.000 0.111 0.000 0.500 0.001 0.009 0.000 0.045 0.000 0.102 0.000 0.468 0.001 0.000 0.000 Total TAP Emissions 0.00 Total VOC Emissions 0.14 n VOC & Non TAP-HC 0.05	1.499 0.003 0.119 0.862 0.002 0.068 0.000 0.000 0.000 0.179 0.000 0.014 0.000 0.000 0.000 1.271 0.003 0.101 0.000 0.000 0.000 0.111 0.000 0.009 0.008 0.000 0.001 0.500 0.001 0.040 0.009 0.000 0.001 0.045 0.000 0.004 0.102 0.000 0.008 0.468 0.001 0.037 0.000 0.000 0.000 100.000 0.000 0.10 Total TAP Emissions 0.14 5.30 n VOC & Non TAP-HC 0.05 2.13

This is a sample calculation for EPNs: 4e-13-WST-CV & 4f-13-WST-CV.

Emission calculations shown below are presented for informational purposes only as vapors from the water storage tanks are routed to the control flare (EPN: 5-13-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER: "See Above"

EMISSION SOURCE DESCRIPTION: 400 BBL Water Storage Tank-Common Vent

DATA:

Emission Source:	Water Storage Vapors ('Working' & 'Standing') (C.H. Lewis 30-19H 1)
Average Daily Water Throughput: (Annual Average; BBLD/Tank - Q _{avg})	150
Maximum Daily Water Throughput: (BBLD/Tank - Q _{max})	300
Average VOC Working Losses - L _w (lb/yr):	295.580
Average VOC Standing Losses - L _S (lb/yr):	36.870
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to Section 4.0 for summary

Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (LW + LS) * 1.134/8760	=	0.04
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (L_s + (L_w * Q_{Max} \div Q_{avg})) * 1.134/8760$	=	0.08
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	0.19

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference Section 4.0.

	CALCULATED EMISSION				SSION RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000	
Methane (excluded from VOC total)	6.20	0.0027	0.0050	0.0117	
Ethane (excluded from VOC total)	5.60	0.0024	0.0046	0.0106	
Propane	17.60	0.0076	0.0143	0.0332	
Iso-Butane	1.50	0.0006	0.0012	0.0028	
N-Butane	27.10	0.0117	0.0220	0.0511	
Iso-Pentane	1.50	0.0006	0.0012	0.0028	
N-Pentane	14.60	0.0063	0.0119	0.0275	
Heptane	9.20	0.0040	0.0075	0.0173	
Octane	6.90	0.0030	0.0056	0.0130	
Other NM/NE Hydrocarbons	1.80	0.0008	0.0015	0.0034	

N-Hexane (TAP)	7.90	0.0034	0.0064	0.0149
Benzene (TAP)	0.10	0.0000	0.0001	0.0002
	Total TAP Emissions	0.00	0.01	0.02
	Total VOC Emissions	0.04	0.07	0.17
Total No.	n VOC & Non TAP-HC	0.01	0.01	0.02
Total I	Hydrocarbon Emissions	0.04	0.08	0.19

DATA:

Emission Source: Flash Gas from Brine Solution (C.H. Lewis 30-19H 1)

Approx. Pressure Drop of Brine Solution: (psig) 105 Approx. Temperature of Brine Solution: (°F) 80

Flash Gas Specific Gravity:
(based on an actual wet gas analysis)

1.1721

Avg. Brine Throughput: (BBLD/Tank) 150

Max. Brine Throughput: (BBLD/Tank) 300

Gas to Water Ratio: (SCF/BBL of Brine; GWR) 1.1

Basis of Emission Estimates: API Documentation & Actual Wet Gas Analysis

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Brine Rate * GWR	=	6.88
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	0.62
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Water Rate to Avg. Water Rate	=	1.23
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * 8760/2000	=	2.72

EMISSION ESTIMATES:

The magnitude of the solubility of natural gas in the interstitial water present in oil sands was studied by The American Petroleum Institute (API) and presented in a 1944 document entitled, "P-V-T and Solubility Relations" (refer to Section 4.0). Results of these studies have been projected to provide estimates of gas volumes present in the brine solution handled at this site within the specific pressure and temperature ranges expected. The composition of this gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RA		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen (excluded from VOC total)	1.078	0.0066	0.0133	0.0293
Carbon Dioxide (excluded from VOC total)	7.682	0.0473	0.0947	0.2086
Methane (excluded from VOC total)	22.418	0.1381	0.2762	0.6088
Ethane (excluded from VOC total)	10.845	0.0668	0.1336	0.2945
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000
Propane	19.453	0.1198	0.2397	0.5283
Iso-Butane	4.104	0.0253	0.0506	0.1114
N-Butane	13.383	0.0825	0.1649	0.3634
Iso-Pentane	5.712	0.0352	0.0704	0.1551
N-Pentane	5.067	0.0312	0.0624	0.1376
Iso-Hexane	2.811	0.0173	0.0346	0.0763
N-Hexane (TAP)	1.468	0.0090	0.0181	0.0399

Methylcyclopentane	0.000	0.0000	0.0000	0.0000
Benzene (TAP)	0.182	0.0011	0.0022	0.0049
Cyclohexane	0.559	0.0034	0.0069	0.0152
Heptanes	2.849	0.0176	0.0351	0.0774
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.0009	0.0019	0.0042
2,2,4-Trimethylpentane (TAP)	1.393	0.0086	0.0172	0.0378
Octanes	0.129	0.0008	0.0016	0.0035
Ethylbenzene (TAP)	0.034	0.0002	0.0004	0.0009
Xylenes (TAP)	0.091	0.0006	0.0011	0.0025
Nonanes	0.374	0.0023	0.0046	0.0102
Decanes Plus	0.214	0.0013	0.0026	0.0058
Total Weight Percent:	100.000			
	Total TAP Emissions	0.02	0.04	0.09
Total VOC Emissions		0.36	0.71	1.57
Total Nor	1 VOC & Non TAP-HC	0.20	0.41	0.90
	Total Emissions	0.62	1.23	2.72

Uncontrolled VOC Emission Total (TPY)

Storage Vapors + Brine Flash

1.74

DATA:

Emission Source: Losses When Opening Thief Hatches

132

Specific Gravity of Gas: 1.1721

Maximum Thief Hatch Venting (Hrs/Yr) (Under Normal/Routine Operating Conditions)

Number of Water Tanks in Vent System: 2 Max. Minutes a Hatch is Opened in a Single Hour: 15

Maximum Hourly Emission Rate (lb/hr):

0.33 (from preceding tank emission estimates)

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.01
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	0.33
Maximum Annual Emissions (TPY)	 Max. Hourly THC Rate * Hours/Yr Hatch is Open 	=	0.04

MISSION SUMMARY (based on the above referenced actual wet gas analysis):				
	CALCULATED EMISSION I	SSION RATES		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Nitrogen (excluded from VOC total)	1.078	0.000	0.004	0.000
Carbon Dioxide (excluded from VOC total)	7.682	0.001	0.025	0.003
Methane (excluded from VOC total)	22.418	0.002	0.074	0.010
Ethane (excluded from VOC total)	10.845	0.001	0.036	0.005
Hydrogen Sulfide (excluded from VOC total)	0.000	0.000	0.000	0.000
Propane	19.453	0.002	0.064	0.008
Iso-Butane	4.104	0.000	0.014	0.002
N-Butane	13.383	0.001	0.044	0.006
Iso-Pentane	5.712	0.001	0.019	0.002

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
N-Pentane	5.067	0.000	0.017	0.002	
Iso-Hexane	2.811	0.000	0.009	0.001	
N-Hexane (TAP)	1.468	0.000	0.005	0.001	
Methylcyclopentane	0.000	0.000	0.000	0.000	
Benzene (TAP)	0.182	0.000	0.001	0.000	
Cyclohexane	0.559	0.000	0.002	0.000	
Heptanes	2.849	0.000	0.009	0.001	
Methylcyclohexane	0.000	0.000	0.000	0.000	
Toluene (TAP)	0.154	0.000	0.001	0.000	
2,2,4-Trimethylpentane (TAP)	1.393	0.000	0.005	0.001	
Octanes Plus	0.129	0.000	0.000	0.000	
Ethylbenzene (TAP)	0.034	0.000	0.000	0.000	
Xylenes (TAP)	0.091	0.000	0.000	0.000	
Nonanes	0.374	0.000	0.001	0.000	
Decanes Plus	0.214	0.000	0.001	0.000	
Other NM/NE HC	0.000	0.000	0.000	0.000	
Total Weight Percent:	100.000				
	Total TAP Emissions	0.00	0.01	0.00	
	Total VOC Emissions		0.19	0.03	
Total Non	VOC & Non TAP-HC	0.00	0.11	0.01	
	Total Emissions	0.01	0.33	0.04	

This is a sample calculation for EPNs: 4g-14-OST-CV & 4h-14-OST-CV.

Emission calculations shown below are presented for informational purposes only as vapors from the water storage tanks are routed to the control flare (EPN: 5-13-F) for combustion, except during brief intervals when thief hatches are opened for purposes of sampling, gauging, etc.

POINT SOURCE I.D. NUMBER: "See Above"

EMISSION SOURCE DESCRIPTION: 400 BBL Water Storage Tank-Common Vent

DATA:

Emission Source: Water Storage Vapors ('Working' & 'Standing') (Spears 31-6H #1)

Average Daily Water Throughput: (Annual Average; BBLD/Tank - Qavg)

Maximum Daily Water Throughput: (BBLD/Tank - Q_{max})

Average VOC Working Losses - L_w (lb/yr): 295.580 Average VOC Standing Losses - L_S (lb/yr): 36.870

Basis of Estimates: AP-42, Chapter 7 (June 2020, Section 7.1.3.1);

Refer to Section 4.0 for summary

Avg. Hourly Uncontrolled THC Losses (lb/hr)	= (LW + LS) * 1.134/8760	=	0.04
Max. Hourly Uncontrolled THC Losses (lb/hr)	$= (L_s + (L_w * Q_{Max} \div Q_{avg})) * 1.134/8760$	=	0.08
Annual Potential Uncontrolled THC Losses (TPY)	= Hourly * 8760/2000	=	0.19

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference Section 4.0.

UNCONTROLLED EMISSIONS SUMMARY:

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000	
Methane (excluded from VOC total)	6.20	0.0027	0.0050	0.0117	
Ethane (excluded from VOC total)	5.60	0.0024	0.0046	0.0106	
Propane	17.60	0.0076	0.0143	0.0332	
Iso-Butane	1.50	0.0006	0.0012	0.0028	
N-Butane	27.10	0.0117	0.0220	0.0511	
Iso-Pentane	1.50	0.0006	0.0012	0.0028	
N-Pentane	14.60	0.0063	0.0119	0.0275	
Heptane	9.20	0.0040	0.0075	0.0173	
Octane	6.90	0.0030	0.0056	0.0130	
Other NM/NE Hydrocarbons	1.80	0.0008	0.0015	0.0034	

N-Hexane (TAP)	7.90	0.0034	0.0064	0.0149
Benzene (TAP)	0.10	0.0000	0.0001	0.0002
	Total TAP Emissions	0.00	0.01	0.02
	Total VOC Emissions	0.04	0.07	0.17
Total Non	VOC & Non TAP-HC	0.01	0.01	0.02
Total F	Iydrocarbon Emissions	0.04	0.08	0.19

DATA:

Emission Source: Flash Gas from Brine Solution (Spears 31-6H #1)

Approx. Pressure Drop of Brine Solution: (psig) 105 Approx. Temperature of Brine Solution: (°F) 80

Flash Gas Specific Gravity:
(based on an actual wet gas analysis)

1.1721

Avg. Brine Throughput: (BBLD/Tank) 150

Max. Brine Throughput: (BBLD/Tank) 300

Gas to Water Ratio: (SCF/BBL of Brine; GWR) 1.1

Basis of Emission Estimates: API Documentation & Actual Wet Gas Analysis

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	= Brine Rate * GWR	=	6.88
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Flash Gas Gravity * Density of Air * Flash Rate	=	0.62
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	= Avg. Emissions * Ratio of Max. Water Rate to Avg. Water Rate	=	1.23
Annual Potential Uncontrolled Flash Emissions (TPY)	= Hourly * 8760/2000	=	2.72

EMISSION ESTIMATES:

The magnitude of the solubility of natural gas in the interstitial water present in oil sands was studied by The American Petroleum Institute (API) and presented in a 1944 document entitled, "P-V-T and Solubility Relations" (refer to Section 4.0). Results of these studies have been projected to provide estimates of gas volumes present in the brine solution handled at this site within the specific pressure and temperature ranges expected. The composition of this gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	0.0066	0.0133	0.0293	
Carbon Dioxide (excluded from VOC total)	7.682	0.0473	0.0947	0.2086	
Methane (excluded from VOC total)	22.418	0.1381	0.2762	0.6088	
Ethane (excluded from VOC total)	10.845	0.0668	0.1336	0.2945	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	19.453	0.1198	0.2397	0.5283	
Iso-Butane	4.104	0.0253	0.0506	0.1114	
N-Butane	13.383	0.0825	0.1649	0.3634	
Iso-Pentane	5.712	0.0352	0.0704	0.1551	
N-Pentane	5.067	0.0312	0.0624	0.1376	
Iso-Hexane	2.811	0.0173	0.0346	0.0763	
N-Hexane (TAP)	1.468	0.0090	0.0181	0.0399	

Methylcyclopentane	0.000	0.0000	0.0000	0.0000
Benzene (TAP)	0.182	0.0011	0.0022	0.0049
Cyclohexane	0.559	0.0034	0.0069	0.0152
Heptanes	2.849	0.0176	0.0351	0.0774
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.0009	0.0019	0.0042
2,2,4-Trimethylpentane (TAP)	1.393	0.0086	0.0172	0.0378
Octanes	0.129	0.0008	0.0016	0.0035
Ethylbenzene (TAP)	0.034	0.0002	0.0004	0.0009
Xylenes (TAP)	0.091	0.0006	0.0011	0.0025
Nonanes	0.374	0.0023	0.0046	0.0102
Decanes Plus	0.214	0.0013	0.0026	0.0058
Total Weight Percent:	Total Weight Percent: 100.000			
	Total TAP Emissions	0.02	0.04	0.09
Total VOC Emissions		0.36	0.71	1.57
Total Non VOC & Non TAP-HC		0.20	0.41	0.90
	Total Emissions	0.62	1.23	2.72

Uncontrolled VOC Emission Total (TPY)	Storage Vapors + Brine Flash	=	1.74
---------------------------------------	------------------------------	---	------

132

DATA:

Emission Source: Losses When Opening Thief Hatches

Specific Gravity of Gas: 1.1721

Maximum Thief Hatch Venting (Hrs/Yr)

(Under Normal/Routine Operating Conditions)

Number of Water Tanks in Vent System: 2 Max. Minutes a Hatch is Opened in a Single Hour: 15

Maximum Hourly Emission Rate (lb/hr):

(from preceding tank emission estimates) 0.33

Avg. Hourly Emissions (lb/hr)	= Annual Total/8760 (hrs/yr)	=	0.01
Maximum Hourly Emissions (lb/hr)	= Max. Emission Rate * Max. Minutes/Hr Hatch is Open	=	0.33
Maximum Annual Emissions (TPY)	= Max. Hourly THC Rate * Hours/Yr Hatch is Open	=	0.04

EMISSION SUMMARY (based on the above referenced actual wet gas analysis):					
		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	0.000	0.004	0.000	
Carbon Dioxide (excluded from VOC total)	7.682	0.001	0.025	0.003	
Methane (excluded from VOC total)	22.418	0.002	0.074	0.010	
Ethane (excluded from VOC total)	10.845	0.001	0.036	0.005	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.000	0.000	0.000	
Propane	19.453	0.002	0.064	0.008	
Iso-Butane	4.104	0.000	0.014	0.002	
N-Butane	13.383	0.001	0.044	0.006	
Iso-Pentane	5.712	0.001	0.019	0.002	

		CAL	CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)		
N-Pentane	5.067	0.000	0.017	0.002		
Iso-Hexane	2.811	0.000	0.009	0.001		
N-Hexane (TAP)	1.468	0.000	0.005	0.001		
Methylcyclopentane	0.000	0.000	0.000	0.000		
Benzene (TAP)	0.182	0.000	0.001	0.000		
Cyclohexane	0.559	0.000	0.002	0.000		
Heptanes	2.849	0.000	0.009	0.001		
Methylcyclohexane	0.000	0.000	0.000	0.000		
Toluene (TAP)	0.154	0.000	0.001	0.000		
2,2,4-Trimethylpentane (TAP)	1.393	0.000	0.005	0.001		
Octanes Plus	0.129	0.000	0.000	0.000		
Ethylbenzene (TAP)	0.034	0.000	0.000	0.000		
Xylenes (TAP)	0.091	0.000	0.000	0.000		
Nonanes	0.374	0.000	0.001	0.000		
Decanes Plus	0.214	0.000	0.001	0.000		
Other NM/NE HC	0.000	0.000	0.000	0.000		
Total Weight Percent:	100.000					
	Total TAP Emissions	0.00	0.01	0.00		
	Total VOC Emissions		0.19	0.03		
Total Nor	VOC & Non TAP-HC	0.00	0.11	0.01		
	Total Emissions	0.01	0.33	0.04		

POINT SOURCE I.D. NUMBER: 5-13-F

EMISSION SOURCE DESCRIPTION: Control Flare

DATA:

Emission Source: Unburned Hydrocarbons and Products of Combustion

Atmospheric Gas Streams:

Gas Stream #1: Storage Tank Vapors

Gas Heat of Combustion (BTU/Ft³-calculated value): 2116

Low Pressure Gas Streams:

Gas Stream #2a: Flare Gas (Well Gas Relief)

Gas Heat of Combustion (BTU/Ft³-actual wet gas analysis): 1807

Gas Stream #2b: Heater Treater-Flash Gas

Gas Heat of Combustion (BTU/Ft³-actual analysis): 1531
Pilot Feed: Yes
Gas Heat of Combustion (BTU/Ft³-actual wet gas analysis): 1807

Combustion Efficiency: 98% for all HC

Gas Stream #1 - Storage Tank Vapors

Gas volume estimates are supported by the calculations associated with EPNs: 4a-13-OST-CV through 4h-14-OST-CV and are outlined below:

	INPUT						
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT³)		Specific Gravity of Gas		
539.88	8760	98		2116	1.3484		
CALCULATIONS							
	=	gas rate (scf/hr)	х	efficiency	х	usage (hrs/yr)	
Gas Combusted (annual hourly average)	=	540	x	0.98	x	8,760	
(unnaat nourty average)	=	4,634,762	4,634,762 scf/yr = 529 SCF/hr		SCF/hr		
Heat Content	=	gas rate (scf/yr)	X	gas heat of combustion (BTU/scf)			
(annual hourly average)	=	4,634,762	x	2116			
(unitial nounty are age)	=				1.1195 MMBTU/Hr		
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)	
Emissions (lbs/hr)	=	1.3484	х	0.0764	х	540	
(103/111)	=	55.62	lbs/hr				
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)	
Emissions (TPY)	=	1.3484	х	0.0000382	x	4,729,349	
(11.1)	=	243.60	TPY				

SPECIATION FACTORS:

Speciation of the flash gas mixture is based on a weighted average of those streams from the tank vents directed to the flare; refer to the weighted average calculation in Section 4.0.

EMISSIONS SUMMARY:		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	0.047	0.0263	0.0263	0.1152	
Carbon Dioxide (excluded from VOC total)	5.661	3.1484	3.1484	13.7900	
Methane (excluded from VOC total)	10.622	0.1182	0.1182	0.5175	
Ethane (excluded from VOC total)	15.307	0.1703	0.1703	0.7458	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	28.854	0.3210	0.3210	1.4058	
Iso-Butane	5.302	0.0590	0.0590	0.2583	
N-Butane	16.986	0.1889	0.1889	0.8276	
Iso-Pentane	5.049	0.0562	0.0562	0.2460	
N-Pentane	5.351	0.0595	0.0595	0.2607	
Iso-Hexanes	0.813	0.0090	0.0090	0.0396	
N-Hexane (TAP)	0.722	0.0080	0.0080	0.0352	
Methylcyclopentane	1.163	0.0129	0.0129	0.0567	
Benzene (TAP)	0.174	0.0019	0.0019	0.0085	
Cyclohexane	0.025	0.0003	0.0003	0.0012	
Heptanes	2.111	0.0235	0.0235	0.1028	
Methylcyclohexane	0.000	0.0000	0.0000	0.0000	
Toluene (TAP)	0.102	0.0011	0.0011	0.0050	
2,2,4-Trimethylpentane (TAP)	0.073	0.0008	0.0008	0.0036	
Octanes	0.678	0.0075	0.0075	0.0330	
Ethylbenzene (TAP)	0.416	0.0046	0.0046	0.0203	
Xylenes (TAP)	0.009	0.0001	0.0001	0.0004	
Nonanes	0.105	0.0012	0.0012	0.0051	
Decanes Plus	0.267	0.0030	0.0030	0.0130	
Other NM/NE HC	0.164	0.0018	0.0018	0.0080	
TOTAL WEIGHT PERCENT:	TOTAL WEIGHT PERCENT: 100.000				
TOTAL TAP E	MISSIONS:	0.02	0.02	0.07	
TOTAL VOC E	MISSIONS:	0.76	0.76	3.33	
TOTAL Non-VOC & No	on-TAP HC:	0.29	0.29	1.26	
TOTAL E	MISSIONS:	4.22	4.22	18.50	

Gas Stream #2a - Flare Gas (Well Gas Relief)

Gas volume estimates are supported by the calculations associated with EPN: 6-13-FG:

Ous volume estimates are suppl			NPUT	10.				
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT³)		Specific Gravity of Gas			
4,166.67	8760	98		1807	1.1721			
CALCULATIONS								
G G 1 I	=	gas rate (scf/hr)	x	efficiency	х	usage (hrs/yr)		
Gas Combusted (annual hourly average)	=	4,167	x	0.98	x	8,760		
(annual nourly average)	=	35,770,029	scf/yr	= 4,083 SCF/hr				
H (C)	=	gas rate (scf/yr)	X	gas heat of combustion (BTU/scf)				
Heat Content (annual hourly average)	=	35,770,029	х	1807				
(united nourly average)	=				7.3770	7.3770 MMBTU/Hr		
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	х	Maximum Gas Rate (SCF/Hr)		
Emissions (lbs/hr)	=	1.1721	х	0.0764	x	4,167		
(103/111)	=	373.12	lbs/hr					
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	х	Total Gas Rate (SCF/Yr)		
Emissions (TPY)	=	1.1721	х	0.0000382	x	36,500,029		
(11 1)	=	1,634.26	TPY					

SPECIATION FACTORS:

Speciation of the well gas relief is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	4.0222	4.0222	17.6173	
Carbon Dioxide (excluded from VOC total)	7.682	28.6630	28.6630	125.5439	
Methane (excluded from VOC total)	22.418	1.6729	1.6729	7.3274	
Ethane (excluded from VOC total)	10.845	0.8093	0.8093	3.5447	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	19.453	1.4517	1.4517	6.3583	
Iso-Butane	4.104	0.3063	0.3063	1.3414	
N-Butane	13.383	0.9987	0.9987	4.3743	
Iso-Pentane	5.712	0.4263	0.4263	1.8670	
N-Pentane	5.067	0.3781	0.3781	1.6562	
Iso-Hexanes	2.811	0.2098	0.2098	0.9188	
N-Hexane (TAP)	1.468	0.1095	0.1095	0.4798	
Methylcyclopentane	0.000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.182	0.0136	0.0136	0.0595	
Cyclohexane	0.559	0.0417	0.0417	0.1827	
Heptanes	2.849	0.2126	0.2126	0.9312	

Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.0115	0.0115	0.0503
2,2,4-Trimethylpentane (TAP)	1.393	0.1040	0.1040	0.4553
Octanes	0.129	0.0096	0.0096	0.0422
Ethylbenzene (TAP)	0.034	0.0025	0.0025	0.0111
Xylenes (TAP)	0.091	0.0068	0.0068	0.0297
Nonanes	0.374	0.0279	0.0279	0.1222
Decanes Plus	0.214	0.0160	0.0160	0.0699
Other Nm/NE HC	0.000	0.0000	0.0000	0.0000
TOTAL WEIGHT PERCENT:	100.000			
TOTAL TAP E	TOTAL TAP EMISSIONS:		0.25	1.09
TOTAL VOC E	TOTAL VOC EMISSIONS:		4.33	18.95
TOTAL Non-VOC & No	TOTAL Non-VOC & Non-TAP HC:		2.48	10.87
TOTAL EMISSIONS:		39.49	39.49	172.98

Gas Stream #2b - Heater Treater Flash Gas

Gas volume estimates are supported by the calculations associated with EPN: 8-13-HT-FG:

Gas volume estimales are su	ipported by th			11. 0-13-111-1 0.				
	INPUT							
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT³)		Specific Gravity of Gas			
430.68	8760	98		1531	1.0036			
		CALCI	JLATIO	ONS				
Con Combunted	=	gas rate (scf/hr)	х	efficiency	x	usage (hrs/yr)		
Gas Combusted (annual hourly average)	=	431	х	0.98	x	8,760		
(annual nourly average)		3,697,302	scf/yr	=	422	SCF/hr		
Heat Content		gas rate (scf/yr)	X	gas heat of combustion (BTU/scf)				
(annual hourly average)		3,697,302	x		1531			
(amula nounty are age)	=				0.6462 MMBTU/Hr			
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	x	Maximum Gas Rate (SCF/Hr)		
Emissions (lbs/hr)		1.0036	x	0.0764	x	431		
(103/111)	=	33.02	lbs/hr					
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	x	Total Gas Rate (SCF/Yr)		
Emissions (TPY)	=	1.0036	х	0.0000382	х	3,772,757		
(11.1)	=	144.64	TPY					

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from the referenced laboratory results; refer to Southern Petroleum Laboratories Report No.: 2030-16110134-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.127	0.3722	0.3722	1.6301	
Carbon Dioxide (excluded from VOC total)	9.972	3.2930	3.2930	14.4233	
Methane (excluded from VOC total)	30.776	0.1016	0.1016	0.4451	
Ethane (excluded from VOC total)	13.262	0.0438	0.0438	0.1918	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.001	0.0000	0.0000	0.0000	
Propane	20.576	0.0679	0.0679	0.2976	
Iso-Butane	3.552	0.0235	0.0235	0.1028	
N-Butane	10.173	0.0672	0.0672	0.2943	
Iso-Pentane	3.383	0.0223	0.0223	0.0979	
N-Pentane	2.788	0.0184	0.0184	0.0807	
Iso-Hexanes	1.128	0.0074	0.0074	0.0326	
N-Hexane (TAP)	0.583	0.0039	0.0039	0.0169	
Methylcyclopentane	0.000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.082	0.0005	0.0005	0.0024	
Cyclohexane	0.356	0.0024	0.0024	0.0103	
Heptanes	1.029	0.0068	0.0068	0.0298	
Methylcyclohexane	0.000	0.0000	0.0000	0.0000	
Toluene (TAP)	0.069	0.0005	0.0005	0.0020	
2,2,4-Trimethylpentane (TAP)	0.603	0.0040	0.0040	0.0174	
Octanes	0.062	0.0004	0.0004	0.0018	
Ethylbenzene (TAP)	0.000	0.0000	0.0000	0.0000	
Xylenes (TAP)	0.053	0.0004	0.0004	0.0015	
Nonanes	0.201	0.0013	0.0013	0.0058	
Decanes Plus	0.224	0.0015	0.0015	0.0065	
Other Nm/NE HC	0.000	0.0000	0.0000	0.0000	
TOTAL WEIGHT PERCENT:	TOTAL WEIGHT PERCENT: 100.00				
TOTAL TAP E	MISSIONS:	0.01	0.01	0.04	
TOTAL VOC E	MISSIONS:	0.23	0.23	1.00	
TOTAL Non-VOC & No	on-TAP HC:	0.15	0.15	0.64	
TOTAL E	MISSIONS	4.04	4.04	17.69	

Pilot Gas (maximum gas flowrate based on conservative estimate):

g	INPUT						
Maximum Gas Flowrate (scf/hr)	Operating Time (hrs/year)	Burn Efficiency (%)	Gas Heat of Combustion (BTU/FT³)		Specific Gravity of Gas		
21.00	8760	98		1807	1.1721		
		CALC	J LATI (ONS			
	=	gas rate (scf/hr)	х	efficiency	х	usage (hrs/yr)	
Gas Combusted (annual hourly average)	=	21	x	0.98	x	8,760	
(unnual nourly average)	=	180,281	scf/yr	=	21	SCF/hr	
H G	=	gas rate (scf/yr)	X	gas heat of combustion (BTU/scf)			
Heat Content (annual hourly average)	=	180,281	х	1807			
(unnual nourly average)	=				0.0372	372 MMBTU/Hr	
Uncontrolled Max. Hourly	=	gas specific gravity	x	density of air (lb/SCF)	х	Maximum Gas Rate (SCF/Hr)	
Emissions (lbs/hr)	=	1.1721	x	0.0764	x	21	
(103/111)	=	1.88	lbs/hr				
Uncontrolled Annual	=	gas specific gravity	x	density of air (tons/SCF)	х	Total Gas Rate (SCF/Yr)	
Emissions (TDV)	=	1.1721	х	0.0000382	x	183,960	
(TPY)	=	8.24	TPY				

SPECIATION FACTORS:

Speciation of the pilot gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

EMISSIONS SUMMARY:							
		CALCULATED EMISSION RATES					
POLLUTANT:	POLLUTANT: Weight Percent		Maximum Hourly (lb/hr)	Annual (TPY)			
Nitrogen (excluded from VOC total)	1.078	0.0203	0.0203	0.0888			
Carbon Dioxide (excluded from VOC total)	7.682	0.1445	0.1445	0.6327			
Methane (excluded from VOC total)	22.418	0.0084	0.0084	0.0369			
Ethane (excluded from VOC total)	10.845	0.0041	0.0041	0.0179			
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	0.0000			
Propane	19.453	0.0073	0.0073	0.0320			
Iso-Butane	4.104	0.0015	0.0015	0.0068			
N-Butane	13.383	0.0050	0.0050	0.0220			
Iso-Pentane	5.712	0.0021	0.0021	0.0094			
N-Pentane	5.067	0.0019	0.0019	0.0083			
Iso-Hexanes	2.811	0.0011	0.0011	0.0046			
N-Hexane (TAP)	1.468	0.0006	0.0006	0.0024			
Methylcyclopentane	0.000	0.0000	0.0000	0.0000			
Benzene (TAP)	0.182	0.0001	0.0001	0.0003			
Cyclohexane	0.559	0.0002	0.0002	0.0009			
Heptanes	2.849	0.0011	0.0011	0.0047			

Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.0001	0.0001	0.0003
2,2,4-Trimethylpentane (TAP)	1.393	0.0005	0.0005	0.0023
Octanes	0.129	0.0000	0.0000	0.0002
Ethylbenzene (TAP)	0.034	0.0000	0.0000	0.0001
Xylenes (TAP)	0.091	0.0000	0.0000	0.0001
Nonanes	0.374	0.0001	0.0001	0.0006
Decanes Plus	0.214	0.0001	0.0001	0.0004
Other Nm/NE HC	0.000	0.0000	0.0000	0.0000
TOTAL WEIGHT PERCENT:	100.000			
TOTAL TAP E	MISSIONS:	0.00	0.00	0.01
TOTAL VOC E	TOTAL VOC EMISSIONS:		0.02	0.10
TOTAL Non-VOC & No	TOTAL Non-VOC & Non-TAP HC:		0.01	0.05
TOTAL EMISSIONS:		0.20	0.20	0.87

Total of Average Hourly VOC emissions estimated for this source:	5.34 Lbs/Hr
Total of Maximum Hourly VOC emissions estimated for this source:	5.34 Lbs/Hr
Total of Maximum Annual VOC emissions estimated for this source:	23.38 TPY
CALCULATIONS - Selected Combustion Products	

Summary of all routine streams combusted by this flare:

Gas Stream	Annual Operating Hours	Average Flowrate (SCF/Hr)	Maximum Flowrate (SCF/Hr)	Average Heat Rate (MMBTU/Hr)	Maximum Heat Rate (MMBTU/Hr)
1. Storage Tank Vapors	8760	539.88	539.88	1.1195	1.1195
2a. Flare Gas (Well Gas Relief)	8760	4166.67	4166.67	7.3770	7.3770
2b. Heater Treater-Flash Gas	8760	430.68	430.68	0.6462	0.6462
Pilot Feed	8760	21.00	21.00	0.0372	0.0372
	Totals:	5158.00	5158.00	9.18	9.18

Emission factor for soot is from AP-42 "Compilation of Air Pollution Emission Factors" for an industrial burn flare stack (refer to Section 4.0 for copies of supporting documentation).

SO2 emissions based on the composite H2S composition of the flare gas streams assuming stoichiometric combustion.

	Emission	CALCULATED EMISSION RATES		
POLLUTANT:	Factor (lb/SCF)	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Soot (expressed as PM ₁₀)	0.000011	0.06	0.06	0.25
Soot (expressed as PM _{2.5})	0.000011	0.06	0.06	0.25
SO_2	N/A	0.00	0.00	0.00

Emission factors for nitrogen oxide and carbon monoxide are from a 1983 CMA document entitled "A Report on a Flare Efficiency Study", for a non-assisted industrial burn flares. (refer to Section 4.0 for copies of supporting documentation).

	Emission	CALCULATED EMISSION RATES			
POLLUTANT:	Factor (lb/10 ⁶ BTU)	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen Oxides	0.1380	1.27	1.27	5.55	
СО	0.2755	2.53	2.53	11.08	

Emission calculations shown below are presented for informational purposes only as well gas is used as fuel with any relief routed to the control flare (EPN: 5-13-F) for combustion.

POINT SOURCE I.D. NUMBER: 6-13-FG

EMISSION SOURCE DESCRIPTION: Flare Gas (Well Gas Relief)

DATA:

Emission Source: Well Gas Relief

Gas Specific Gravity: 1.1721

Maximum Gas Rate (MSCFD):

100 (conservative estimate)

Basis of Emission Estimates: Conservative Estimate & Actual Wet Gas Analysis

Avg. Hourly Uncontrolled Gas Rate (SCF/Hr)	=	Gas Rate * 1000/24	=	4166.67
Avg. Hourly Uncontrolled Total Emissions (lb/hr)	=	Gas Gravity * Density of Air * Gas Rate	=	373.12
Max. Hourly Uncontrolled Total Emissions (lb/hr)	=	Gas Gravity * Density of Air * Gas Rate	=	373.12
Annual Potential Uncontrolled Emissions (TPY)	=	Hourly * 8760/2000	=	1634.27

SPECIATION FACTORS:

Speciation of the well gas relief is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	4.0222	4.0222	17.6174	
Carbon Dioxide (excluded from VOC total)	7.682	28.6630	28.6630	125.5443	
Methane (excluded from VOC total)	22.418	83.6458	83.6458	366.3697	
Ethane (excluded from VOC total)	10.845	40.4647	40.4647	177.2361	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	19.453	72.5828	72.5828	317.9137	
Iso-Butane	4.104	15.3128	15.3128	67.0703	
N-Butane	13.383	49.9345	49.9345	218.7138	
Iso-Pentane	5.712	21.3125	21.3125	93.3493	
N-Pentane	5.067	18.9059	18.9059	82.8082	
Iso-Hexane	2.811	10.4884	10.4884	45.9392	
N-Hexane (TAP)	1.468	5.4774	5.4774	23.9910	
Methylcyclopentane	0.000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.182	0.6791	0.6791	2.9744	
Cyclohexane	0.559	2.0857	2.0857	9.1355	
Heptanes	2.849	10.6302	10.6302	46.5602	

Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.5746	0.5746	2.5168
2,2,4-Trimethylpentane (TAP)	1.393	5.1975	5.1975	22.7653
Octanes	0.129	0.4813	0.4813	2.1082
Ethylbenzene (TAP)	0.034	0.1269	0.1269	0.5557
Xylenes (TAP)	0.091	0.3395	0.3395	1.4872
Nonanes	0.374	1.3955	1.3955	6.1122
Decanes Plus	0.214	0.7985	0.7985	3.4973
Total Weight Percent:	100.000			
Total TAP Emissions		12.40	12.40	54.29
Total VOC Emissions		216.32	216.32	947.50
Total Non VOC & Non TAP-HC		124.11	124.11	543.61
Total Emissions		373.12	373.12	1634.27

VOC Emission Total (TPY) = Well Gas Relief = 947.50

Emission calculations shown below are presented for informational purposes only as off-gas from the heater treaters is routed to the control flare (EPN: 5-13-F) for combustion.

POINT SOURCE I.D. NUMBER: 8-13-HT-FG

EMISSION SOURCE DESCRIPTION: Heater Treater-Flash Gas

DATA:

Emission Source: Heater Treater Flash Gas

Flash Gas Specific Gravity: 1.0036

Maximum Oil Throughput: 460 (BBLD)

,

Basis of Emission Estimates:

Comparable Analysis/Vasquez-Beggs Correlation

Estimates for composition associated with this stage of the process were derived from a laboratory test of a gas sample collected at this site, refer to Southern Petroleum Laboratories Report No.: 2030-16110134-001A in Section 4.0. However, estimates for the gas volumes (GOR) associated with this stage of the process was derived from a laboratory test of an oil sample collected at another site under similar conditions (pressure & temperature), refer to Southern Petroleum Laboratories Report No.: 2013030083-001A in Section 4.0. The following table shows the field conditions compared to the results from the laboratory test of the oil sample:

ADI Oil Crovity @ 60°E	Process C	Gas/Oil Ratio	
API Oil Gravity @ 60°F	Pressure (PSIG)	Temperature (°F)	(SCF/BBL)
Actual Facility Conditions:			
43	105	80	
	50 80		Unknown
Laboratory Conditions:			
44	205	131	
	35	120	69.758
	22.47		

Since an oil flash analysis has not been performed on an actual sample collected from this particular producing zone, the "Gas to Oil" (GOR) ratio estimated above will be compared with a value derived from the Vasquez-Beggs Correlation presented in the following table. For purposes of permitting, the higher of the two GOR values will be used within these emission estimates.

VASQUEZ-BEGGS CORRELATION									
	Stock Tank Oil API	Gravity (AP)	<i>I</i>) =	43					
I N	Flash Gas Specific	Gravity (SG i	.) =	1.0036					
P	Flash Gas Pressure Dro	pp (psig) (P i) =	55					
$egin{array}{c} U \ T \end{array}$	Pressure Vessel Tempera	ture (°F) (T	_i) =	80					
1	Atmospheric Pa	ressure (P atm	,) =	14.7					
	Dissolved Gas Gravity @ 100 (SG;)*[1.0+0.00005912*API*T;*Log		11 9 1 9 4						
		Co	nstants						
		°API G	ravity						
	$^{\circ}\text{API} \rightarrow$	< 30	≥ 30	Constants Used based on API Gravity					
	C1	0.0362	0.0178	0.0178					
	C2	1.0937	1.187	1.187					
	C3	11.11							
GOR =	$(C1) * (SG_x) * ((P_i + P_{atm})^{C2}) * e^{[(C3)(API)/(T + i)]}$	·460)] =	17.70	scf/bbl					
refer to "Corre	refer to "Correlations for Fluid Physical Property Prediction" Journal of Petroleum Technology, Society of Petroleum Engineers, 1980								

Avg. Hourly Uncontrolled Flash Rate (SCF/Hr)	=	Oil Rate * GOR	=	430.68
Avg. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	33.02
Max. Hourly Uncontrolled Total Flash Emissions (lb/hr)	=	Flash Gas Gravity * Density of Air * Flash Rate	=	33.02
Annual Potential Uncontrolled Flash Emissions (TPY)	=	Hourly * 8760/2000	=	144.63

SPECIATION FACTORS:

Speciation of the flash gas mixture taken from the referenced laboratory results; refer to Southern Petroleum Laboratories Report No.: 2030-16110134-001A in Section 4.0

		CALCULATED EMISSION RATES				
POLLUTANT:	POLLUTANT: Weight Percent		Maximum Hourly (lb/hr)	Annual (TPY)		
Nitrogen (excluded from VOC total)	1.127	0.3722	0.3722	1.6300		
Carbon Dioxide (excluded from VOC total)	9.972	3.2930	3.2930	14.4223		
Methane (excluded from VOC total)	30.776	10.1630	10.1630	44.5106		
Ethane (excluded from VOC total)	13.262	4.3794	4.3794	19.1805		
Hydrogen Sulfide (excluded from VOC total)	0.001	0.0003	0.0003	0.0014		
Propane	20.576	6.7947	6.7947	29.7586		
Iso-Butane	3.552	1.1730	1.1730	5.1372		
N-Butane	10.173	3.3594	3.3594	14.7130		
Iso-Pentane	3.383	1.1171	1.1171	4.8928		
N-Pentane	2.788	0.9207	0.9207	4.0322		
Iso-Hexane	1.128	0.3725	0.3725	1.6314		

N-Hexane (TAP)	0.583	0.1925	0.1925	0.8432
Methylcyclopentane	0.000	0.0000	0.0000	0.0000
Benzene (TAP)	0.082	0.0271	0.0271	0.1186
Cyclohexane	0.356	0.1176	0.1176	0.5149
Heptanes	1.029	0.3398	0.3398	1.4882
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.069	0.0228	0.0228	0.0998
2,2,4-Trimethylpentane (TAP)	0.603	0.1991	0.1991	0.8721
Octanes	0.062	0.0205	0.0205	0.0897
Ethylbenzene (TAP)	0.000	0.0000	0.0000	0.0000
Xylenes (TAP)	0.053	0.0175	0.0175	0.0767
Nonanes	0.201	0.0664	0.0664	0.2907
Decanes Plus	0.224	0.0740	0.0740	0.3240
Total Weight Percent:	100.0000			
	Total TAP Emissions	0.46	0.46	2.01
	14.81	14.81	64.88	
Total No	Total Non VOC & Non TAP-HC			63.69
	Total Emissions	33.02	33.02	144.63

Uncontrolled VOC Emission Total (TPY)

Heater Treater Flash Gas

64.88

POINT SOURCE I.D. NUMBER: 10-13-BV

EMISSION SOURCE DESCRIPTION: Blowcase Vessel (Flare Liquids)

DATA:

Emission Source:	Natural Gas Supplied to Blowcase
Blowcase Capacity (Gallons):	9
Approximate Volume Discharged per Dump Cycle (Gallons):	4.5
Maximum Annual Discharge Volume (Gallons):	2,190
Maximum Number of Annual Cycles:	487
Maximum Number of Cycles Per Hour:	60
Maximum Discharge Pressure (PSIA):	65
Operating Pressure During Filling Cycle (PSIA):	15
Gas Consumption Rate (SCF/Cycle): (difference in standard gas volumes under Discharge & Filling conditions)	4
Fuel Gas Specific Gravity (SG): (based on an actual wet gas analysis)	1.1721
Basis of Estimates:	Mass Balance

Avg. Hourly Uncontrolled Supply Gas Emissions (lb/hr)	= Cycles/Yr*Gas Rate*SG*0.0764/8760	=	0.02
Max. Hourly Uncontrolled Supply Gas Emissions (lb/hr)	= Max. Cycles/Hr * Hourly Rate	=	1.20
Annual Potential Uncontrolled Supply Gas Emissions (TPY)	= Hourly Rate *8760/2000	=	0.09

SPECIATION FACTORS:

Speciation of the supply gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	0.0002	0.0129	0.0010	
Carbon Dioxide (excluded from VOC total)	7.682	0.0015	0.0922	0.0069	
Methane (excluded from VOC total)	22.418	0.0045	0.2690	0.0202	
Ethane (excluded from VOC total)	10.845	0.0022	0.1301	0.0098	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	19.453	0.0039	0.2334	0.0175	
Iso-Butane	4.104	0.0008	0.0492	0.0037	
N-Butane	13.383	0.0027	0.1606	0.0120	
Iso-Pentane	5.712	0.0011	0.0685	0.0051	
N-Pentane	5.067	0.0010	0.0608	0.0046	
Iso-Hexane	2.811	0.0006	0.0337	0.0025	

		CALCUI	CALCULATED EMISSIO		
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
N-Hexane (TAP)	1.468	0.0003	0.0176	0.0013	
Methylcyclopentane	0.000	0.0000	0.0000	0.0000	
Benzene (TAP)	0.182	0.0000	0.0022	0.0002	
Cyclohexane	0.559	0.0001	0.0067	0.0005	
Heptanes	2.849	0.0006	0.0342	0.0026	
Methylcyclohexane	0.000	0.0000	0.0000	0.0000	
Toluene (TAP)	0.154	0.0000	0.0018	0.0001	
2,2,4-Trimethylpentane (TAP)	1.393	0.0003	0.0167	0.0013	
Octanes	0.129	0.0000	0.0015	0.0001	
Ethylbenzene (TAP)	0.034	0.0000	0.0004	0.0000	
Xylenes (TAP)	0.091	0.0000	0.0011	0.0001	
Nonanes	0.374	0.0001	0.0045	0.0003	
Decanes Plus	0.214	0.0000	0.0026	0.0002	
Total Weight Percent:	100.000				
Total T	AP Emissions	0.00	0.04	0.00	
Total VOC Emissions			0.70	0.05	
Total Non VOC &	Non TAP-HC	0.01	0.40	0.03	
To	otal Emissions	0.02	1.20	0.09	

POINT SOURCE I.D. NUMBER: 11-13-BV

EMISSION SOURCE DESCRIPTION: Blowcase Vessel (Drip Pot)

DATA:

Emission Source:	Natural Gas Supplied to Blowcase
Blowcase Capacity (Gallons):	9
Approximate Volume Discharged per Dump Cycle (Gallons):	4.5
Maximum Annual Discharge Volume (Gallons):	2,190
Maximum Number of Annual Cycles:	487
Maximum Number of Cycles Per Hour:	2
Maximum Discharge Pressure (PSIA):	65
Operating Pressure During Filling Cycle (PSIA):	15
Gas Consumption Rate (SCF/Cycle): (difference in standard gas volumes under Discharge & Filling conditions)	4
Fuel Gas Specific Gravity (SG): (based on an actual wet gas analysis)	1.1721
Basis of Estimates:	Mass Balance

Basis of Estimates: Mass Balance

Avg. Hourly Uncontrolled Supply Gas Emissions (lb/hr)	= Cycles/Yr*Gas Rate*SG*0.0764/8760	= 0.02
Max. Hourly Uncontrolled Supply Gas Emissions (lb/hr)	= Max. Cycles/Hr * Hourly Rate	= 0.04
Annual Potential Uncontrolled Supply Gas Emissions (TPY)	= Hourly Rate *8760/2000	= 0.09

SPECIATION FACTORS:

Speciation of the supply gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	0.0002	0.0004	0.0010	
Carbon Dioxide (excluded from VOC total)	7.682	0.0015	0.0031	0.0069	
Methane (excluded from VOC total)	22.418	0.0045	0.0090	0.0202	
Ethane (excluded from VOC total)	10.845	0.0022	0.0043	0.0098	
Hydrogen Sulfide (excluded from VOC total)	0.000	0.0000	0.0000	0.0000	
Propane	19.453	0.0039	0.0078	0.0175	
Iso-Butane	4.104	0.0008	0.0016	0.0037	
N-Butane	13.383	0.0027	0.0054	0.0120	
Iso-Pentane	5.712	0.0011	0.0023	0.0051	
N-Pentane	5.067	0.0010	0.0020	0.0046	
Iso-Hexane	2.811	0.0006	0.0011	0.0025	

		CALCUL	SSION RATES	
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
N-Hexane (TAP)	1.468	0.0003	0.0006	0.0013
Methylcyclopentane	0.000	0.0000	0.0000	0.0000
Benzene (TAP)	0.182	0.0000	0.0001	0.0002
Cyclohexane	0.559	0.0001	0.0002	0.0005
Heptanes	2.849	0.0006	0.0011	0.0026
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.0000	0.0001	0.0001
2,2,4-Trimethylpentane (TAP)	1.393	0.0003	0.0006	0.0013
Octanes	0.129	0.0000	0.0001	0.0001
Ethylbenzene (TAP)	0.034	0.0000	0.0000	0.0000
Xylenes (TAP)	0.091	0.0000	0.0000	0.0001
Nonanes	0.374	0.0001	0.0001	0.0003
Decanes Plus	0.214	0.0000	0.0001	0.0002
Total Weight Percent:	100.000			
Total T	AP Emissions	0.00	0.00	0.00
Total VOC Emissions			0.02	0.05
Total Non VOC &	Non TAP-HC	0.01	0.01	0.03
To	otal Emissions	0.02	0.04	0.09

POINT SOURCE I.D. NUMBER: 17-13-LL

EMISSION SOURCE DESCRIPTION: Loading Losses-Oil Transfer to Tank Truck

DATA:

Emission Source:	Vapors from Oil Truck Loading
Maximum Annual Loading Volume-Barrels (Q):	167,900
Average Oil Temperature - °F:	80
Average Oil Temperature - °R (T):	540
API Oil Gravity@ 100 °F (APIG):	46.5
Vapor Molecular Weight - lb/lb/mole (M):	50
Saturation Factor (S):	0.6
Reid Vapor Pressure = -1.699 + (0.179 x APIG): (from Eq. 3-5 of API Pub. No.: 4683)	6.62
True Vapor Pressure (P): (from Fig. 7.1-13b of AP-42)	6.06
Loading Rate-Barrels/Hr (R): (conservative estimate)	180
Basis of Loading Loss Estimates:	AP-42; June 2008 edition; refer to Section 4.0

Annual Uncontrolled Total Emissions (TPY)	=	12.46 * S * P * M/T*Q*42/2000/1000 gallons loaded	=	14.89
Hourly Uncontrolled Total Emissions (lb/hr)	=	12.46 * S * P * M/T*R*42/1000 gallons loaded	=	31.92
Max. Hourly Uncontrolled Total Emissions (lb/hr)	=	12.46 * S * P * M/T*R*42/1000 gallons loaded	=	31.92

SPECIATION FACTORS:

Speciation factors were taken from "Air Emissions Species Manual - Volume I: Volatile Organic Compound Species Profiles", 2nd edition; Report No.: EPA-450/2-90-001a; page 258; reference Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Hydrogen Sulfide (excluded from VOC total)	0.00	0.0000	0.0000	0.0000	
Methane (excluded from VOC total)	6.20	1.9790	1.9790	0.9232	
Ethane (excluded from VOC total)	5.60	1.7875	1.7875	0.8338	
Propane	17.60	5.6179	5.6179	2.6206	
Iso-Butane	1.50	0.4788	0.4788	0.2234	
N-Butane	27.10	8.6503	8.6503	4.0352	
Iso-Pentane	1.50	0.4788	0.4788	0.2234	
N-Pentane	14.60	4.6603	4.6603	2.1739	
Heptane	9.20	2.9366	2.9366	1.3699	
Octane	6.90	2.2025	2.2025	1.0274	
Other NM/NE Hydrocarbons	1.80	0.5746	0.5746	0.2680	

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
N-Hexane (TAP)	7.90	2.5217	2.5217	1.1763	
Benzene (TAP)	0.10	0.0319	0.0319	0.0149	
Total Weight Percent	100.00				
	Total TAP Emissions	2.55	3.74	1.19	
	28.15	28.15	13.13		
Total Nor	3.77	3.77	1.76		
	31.92	31.92	14.89		

Calculated Max. Gas Flowrate (SCFH) = 236.25

POINT SOURCE I.D. NUMBERS: 18-13-PC

EMISSION SOURCE DESCRIPTION: Pneumatic Controllers

DATA:

Emission Source: Natural Gas Supplied to Controllers & Transmitters

Fuel Gas Specific Gravity:
(based on an actual wet gas analysis)

1.1721

Basis of Emission Estimates: Manufacturers' Specifications or EPA Publication

"INTERMITTENT-BLEED TYPE": (Consumption data based on standard type devices for similar applications, as provided by manufacturers' data from Norriseal and Kimray, Inc. or from an EPA publication entitled, "Lessons Learned from Natural Gas STAR Partners).

Service	Maximum Supply Pressure (PSIG)	Max. Throughput (BBLD)	Maximum Actuator Diameter (inches)	Equivalent Vessel Diameter (inches)	Minimum Dump Height (inches)	Estimated Stroke Rate (strokes/hr)	Estimated Gas Rate Required (SCFH)
Level Controllers (Process Separators)	30	1060	9	30	8	76	10
Pressure Controllers (Process Vessels)	30	N/A	4"	N/A	N/A	2800	22
Pressure Controllers (Fired Equipment)	30	N/A	4"	N/A	N/A	900	7
TOTAL GAS CONSUMPTION :							39

Avg. Hourly Uncontrolled Supply Gas Emissions (lb/hr)	=	Hourly Gas Rate * Gas Density	=	3.49
Max. Hourly Uncontrolled Supply Gas Emissions (lb/hr)	=	Hourly Gas Rate * Gas Density	=	3.49
Annual Potential Uncontrolled Supply Gas Emissions (TPY)	=	Hourly Rate * 8760 hrs/yr/2000 lbs/ton	=	15.29

SPECIATION FACTORS:

Speciation of the supply gas is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		CALCULATED EMISSION RATES			
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	0.0376	0.0376	0.1648	
Carbon Dioxide (excluded from VOC total)	7.682	0.2681	0.2681	1.1746	
Methane (excluded from VOC total)	22.418	0.7824	0.7824	3.4277	
Ethane (excluded from VOC total)	10.845	0.3785	0.3785	1.6582	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	0.0000	

		CA	ALCULATED EMI	ISSION RATES
POLLUTANT:	Weight Percent	Average Hourly (lb/hr)	Maximum Hourly (lb/hr)	Annual (TPY)
Propane	19.453	0.6789	0.6789	2.9744
Iso-Butane	4.104	0.1432	0.1432	0.6275
N-Butane	13.383	0.4671	0.4671	2.0463
Iso-Pentane	5.712	0.1993	0.1993	0.8734
N-Pentane	5.067	0.1768	0.1768	0.7747
Iso-Hexanes	2.811	0.0981	0.0981	0.4298
N-Hexane (TAP)	1.468	0.0512	0.0512	0.2245
Methylcyclopentane	0.000	0.0000	0.0000	0.0000
Benzene (TAP)	0.182	0.0064	0.0064	0.0278
Cyclohexane	0.559	0.0195	0.0195	0.0855
Heptanes	2.849	0.0994	0.0994	0.4356
Methylcyclohexane	0.000	0.0000	0.0000	0.0000
Toluene (TAP)	0.154	0.0054	0.0054	0.0235
2,2,4-Trimethylpentane (TAP)	1.393	0.0486	0.0486	0.2130
Octanes	0.129	0.0045	0.0045	0.0197
Ethylbenzene (TAP)	0.034	0.0012	0.0012	0.0052
Xylenes (TAP)	0.091	0.0032	0.0032	0.0139
Nonanes	0.374	0.0131	0.0131	0.0572
Decanes Plus	0.214	0.0075	0.0075	0.0327
TOTAL WEIGHT PERCENT:	100.000			
TOTAL TAP I	TOTAL TAP EMISSIONS:			0.51
TOTAL VOC I	EMISSIONS:	2.02	2.02	8.86
TOTAL Non-VOC & I	Non-TAP HC	1.16	1.16	5.09
TOTA	AL Emissions	3.49	3.49	15.29

POINT SOURCE I.D. NUMBERS: 19-13-FE

EMISSION SOURCE DESCRIPTION: Fugitive Emissions

DATA:

Emission Source: Fugitive from Light Liquid & Gas-Service

Components

Basis of Emission Estimates: U.S. EPA

EMISSION CALCULATIONS:

	Count	Count - by Service		THC Emission Factors (c) (kg/hr/source)				HC Emissions Annual Emissions (TPY)	
	Lt. Liquid	Gas	Total	Lt. Liquid Service	Gas Service	LL	Gas	LL	Gas
Connectors	68	386	454	2.1E-04	2.0E-04	0.031	0.170	0.14	0.75
Flanges	68	0	68	1.1E-04	3.9E-04	0.016	0.000	0.07	0.00
Open Ends	0	16	16	1.4E-03	2.0E-03	0.000	0.071	0.00	0.31
Pumps ^(a)	1		1	1.3E-02	2.4E-03	0.029	N/A	0.13	N/A
Valves	38	118	156	2.5E-03	4.5E-03	0.209	1.171	0.92	5.13
"Others"(b)	2	6	8	7.5E-03	8.8E-03	0.033	0.116	0.14	0.51
TOTALS:	177	526	703			0.32	1.53	1.40	6.69

⁽a) Process Pumps Only

LIGHT LIQUID-SERVICE SPECIATION FACTORS:

Speciation of the emission stream from components in light liquid service was taken from EPA Publication No.: 453/R-95-017; "Protocol for Equipment Leak Emission Estimates".

		Calculated Emission Rate			
Component	Weight Percent	Avg. Hourly (lb/hr)	Avg. Annual (TPY)		
Hydrogen Sulfide (TAP; excluded from VOC total)	0.0	0.0000	0.0000		
NMEHC (expressed as VOC)	29.2	0.0932	0.4082		
Benzene (TAP)	0.027	0.0001	0.0004		
Ethylbenzene (TAP)	0.0170	0.0001	0.0002		

⁽b) "Others" equipment derived from compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents

 $^{^{(}c)}$ Refer to EPA Publication No. 453/R-95-017, "Protocol for Equipment Leak Emission Estimates", copy included in Section 4.0

Toluene (TAP)	0.075	0.0002	0.0010
Xylenes (m,p,o) (TAP)	0.036	0.0001	0.0005
	TOTAL TAP EMISSIONS:	0.00	0.00
	TOTAL VOC EMISSIONS:	0.09	0.41

GAS SERVICE SPECIATION FACTORS:

Speciation of the emission stream from components in gas service is based on an actual wet gas analysis; refer to Southern Petroleum Laboratories Report No.: 2030-20090023-001A in Section 4.0.

		~ ~	~		
H'. N	IZZIN	ONS	SHIV	1 MI A	RV

		Calculated Emission Rate		
Component	Weight Percent	Avg. Hourly (lb/hr)	Avg. Annual (TPY)	
Nitrogen (excluded from VOC total)	1.078	0.0165	0.0721	
Carbon Dioxide (excluded from VOC total)	7.682	0.1174	0.5141	
Methane (excluded from VOC total)	22.418	0.3425	1.5002	
Ethane (excluded from VOC total)	10.845	0.1657	0.7257	
Hydrogen Sulfide (TAP; excluded from VOC total)	0.000	0.0000	0.0000	
Propane	19.453	0.2972	1.3018	
Iso-Butane	4.104	0.0627	0.2746	
N-Butane	13.383	0.2045	0.8956	
Iso-Pentane	5.712	0.0873	0.3822	
N-Pentane	5.067	0.0774	0.3391	
Iso-Hexanes	2.811	0.0429	0.1881	
N-Hexane (TAP)	1.468	0.0224	0.0982	
Methylcyclopentane	0.000	0.0000	0.0000	
Benzene (TAP)	0.182	0.0028	0.0122	
Cyclohexane	0.559	0.0085	0.0374	
Heptanes	2.849	0.0435	0.1906	
Methylcyclohexane	0.000	0.0000	0.0000	
Toluene (TAP)	0.154	0.0024	0.0103	
2,2,4-Trimethylpentane (TAP)	1.393	0.0213	0.0932	
Octanes	0.129	0.0020	0.0086	
Ethylbenzene (TAP)	0.034	0.0005	0.0023	
Xylenes (TAP)	0.091	0.0014	0.0061	
Nonanes	0.374	0.0057	0.0250	
Decanes Plus	0.214	0.0033	0.0143	
TOTAL WEIGHT PERCENT:	100.000			
	TOTAL TAP EMISSIONS:	0.05	0.22	
	0.89	3.88		
TO	OTAL Non-VOC & Non-TAP HC:	0.51	2.23	
	TOTAL Emissions:	1.53	6.69	
Facility Wide VOC Engitive Totals -	0.00 lb/b		4 20 TDV	

Facility-Wide VOC Fugitive Totals = 0.98 lb/hr 4.29 TPY

POINT SOURCE I.D. NUMBER: 20-13-CST

EMISSION SOURCE DESCRIPTION: 250 Gallon Chemical Storage Tank

DATA:

Emission Source:	"Working" & "Standing" Losses
Maximum Annual Throughput: (Gallons/Yr)	2,500
Average VOC Working Losses - L_W (lb/yr):	2.771
Average VOC Standing Losses - L_S (lb/yr):	4.935
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to Section 4.0 for summary

Avg. Hourly Uncontrolled THC Losses (lb/hr)	=	$(L_W + L_S)/8760$	=	0.00
Annual Potential Uncontrolled THC Losses (TPY)	=	Hourly * 8760/2000	=	0.00

For purposes of permitting and/or providing conservative emission estimates, emissions were calculated using Toluene as the stored material for this tank. A tank size of 250 gallons and an annual throughput of approximately 2,500 gallons were used in the emissions model in an effort to demonstrate a conservative potential emissions estimate.

POINT SOURCE I.D. NUMBER: 21-13-LOT

EMISSION SOURCE DESCRIPTION: 55 Gallon Lube Oil Tank

DATA:

Emission Source:	"Working" & "Standing" Losses
Maximum Annual Throughput: (Gallons/Yr)	550
Average VOC Working Losses - L _W (lb/yr):	0.017
Average VOC Standing Losses - L _S (lb/yr):	0.113
Basis of Estimates:	AP-42, Chapter 7 (June 2020, Section 7.1.3.1); Refer to Section 4.0 for summary

Avg. Hourly Uncontrolled THC Losses (lb/hr)	=	$(L_W + L_S)/8760$	=	0.00
Annual Potential Uncontrolled THC Losses (TPY)	=	Hourly * 8760/2000	=	0.00

For purposes of permitting and/or providing conservative emission estimates, emissions were calculated using Distillate Fuel No. 2 as the stored material for this tank. A tank size of 250 gallons and an annual throughput of approximately 550 gallons were used in the emissions model in an effort to demonstrate a conservative potential emissions estimate.

10/27/22, 2:46 PM about:blank

This is not an official certificate of good standing.

Name History

Name Type

Paloma Natural Gas, LLC Legal

Goodrich Petroleum Company, L.L.C. Previous Legal

Business Information

Business Type: Limited Liability Company

Business ID: 990583

Status: Intent To Dissolve - Failure to File Annual Report

Effective Date: 10/18/2011

State of Incorporation: DE

Principal Office Address: 801 Louisiana, Suite 700

Houston, TX 77002

Registered Agent

Name

C T CORPORATION SYSTEM 645 LAKELAND EAST DRIVE, Suite 101

FLOWOOD, MS 39232

Officers & Directors

Name Title

Paloma Natural Gas Holdings,

LLC

1100 Louisiana Street, Suite 5100

Member

Houston, TX 77002

Michael Gregory Winsor

801 Louisiana Street, STE 700

Houston, TX 77002

Other

Robert E. Poirrier Jr

801 Louisiana Street, Ste. 700

Houston, TX 77002

Treasurer

Scott W. Smith

801 Louisiana Street, Ste. 700

Houston, TX 77002

Vice President

about:blank 1/1

Certificate of Analysis

Number: 2030-20090023-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520 Phone 337-896-3055

Sep. 03, 2020

James Shumaker Goodrich Petroleum 801 Louisiana Suite 700 Houston, TX 77002

Field: AMITE COUNTY, MS Station Name: SPEARS 31-6 H1

Station Number: 2388

Sample Point: METER RUN

Analyzed: 09/03/2020 09:51:00 by WAC

Sampled By: JF-SPL

Sample Of: Gas Spot Sample Date: 08/18/2020 08:00 Sample Conditions: 10 psig, @ 81 °F

Method: GPA 2286 Cylinder No: 0101H

Analytical Data

Components	Mol. %	Wt. %	GPM at 15.025 psia			
Nitrogen	1.295	1.078		GPM TOTAL C2+	14.344	
Carbon Dioxide	5.874	7.682				
Methane	47.022	22.418				
Ethane	12.137	10.845	3.342			
Propane	14.845	19.453	4.211			
Iso-Butane	2.376	4.104	0.801			
n-Butane	7.748	13.383	2.515			
Iso-Pentane	2.664	5.712	1.003			
n-Pentane	2.363	5.067	0.882			
i-Hexanes	1.128	2.811	0.462			
n-Hexane	0.577	1.468	0.242			
Benzene	0.079	0.182	0.022			
Cyclohexane	0.225	0.559	0.079			
i-Heptanes	0.815	2.404	0.377			
n-Heptane	0.148	0.445	0.071			
Toluene	0.055	0.154	0.019			
i-Octanes	0.440	1.393	0.207			
n-Octane	0.038	0.129	0.020			
Ethylbenzene	0.010	0.034	0.004			
Xylenes	0.027	0.091	0.011			
i-Nonanes	0.074	0.303	0.039			
n-Nonane	0.017	0.071	0.010			
Decane Plus	0.043	0.214	0.027			
	100.000	100.000	14.344			

Calculated Physical Properties	Total	C10+
Calculated Molecular Weight	33.65	141.19
GPA 2172 Calculation:		
Calculated Gross BTU per ft ³ @ 15.	025 psia & 60°F	
Real Gas Dry BTU	1837.9	7740.5
Water Sat. Gas Base BTU	1806.6	7535.6
Relative Density Real Gas	1.1721	4.8749
Compressibility Factor	0.9904	

Comments: This sample is richer than the previous samples from this station.

Hydrocarbon Laboratory Manager

Patte S. Derro

Quality Assurance: The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality

assurance, unless otherwise stated.

Table 1.4-1. EMISSION FACTORS FOR NITROGEN OXIDES (NO_x) AND CARBON MONOXIDE (CO) FROM NATURAL GAS COMBUSTION^a

Combustor Type	N	IO_x^b	СО	
(MMBtu/hr Heat Input) [SCC]	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
Large Wall-Fired Boilers (>100) [1-01-006-01, 1-02-006-01, 1-03-006-01]				
Uncontrolled (Pre-NSPS) ^c	280	A	84	В
Uncontrolled (Post-NSPS) ^c	190	A	84	В
Controlled - Low NO _x burners	140	A	84	В
Controlled - Flue gas recirculation	100	D	84	В
Small Boilers (<100) [1-01-006-02, 1-02-006-02, 1-03-006-02, 1-03-006-03]				
Uncontrolled	100	В	84	В
Controlled - Low NO _x burners	50	D	84	В
Controlled - Low NO _x burners/Flue gas recirculation	32	C	84	В
Tangential-Fired Boilers (All Sizes) [1-01-006-04]				
Uncontrolled	170	A	24	C
Controlled - Flue gas recirculation	76	D	98	D
Residential Furnaces (<0.3) [No SCC]				
Uncontrolled	94	В	40	В

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. To convert from lb/10 ⁶ scf to kg/10⁶ m³, multiply by 16. Emission factors are based on an average natural gas higher heating value of 1,020 Btu/scf. To convert from 1b/10 6 scf to lb/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. SCC = Source Classification Code. ND = no data. NA = not applicable.

b Expressed as NO₂. For large and small wall fired boilers with SNCR control, apply a 24 percent reduction to the appropriate NO x emission factor. For

tangential-fired boilers with SNCR control, apply a 13 percent reduction to the appropriate NO x emission factor.

c NSPS=New Source Performance Standard as defined in 40 CFR 60 Subparts D and Db. Post-NSPS units are boilers with greater than 250 MMBtu/hr of heat input that commenced construction modification, or reconstruction after August 17, 1971, and units with heat input capacities between 100 and 250 MMBtu/hr that commenced construction modification, or reconstruction after June 19, 1984.

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	Е
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^d	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	С

a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

b Based on approximately 100% conversion of fuel carbon to CO₂. CO₂[lb/10⁶ scf] = (3.67) (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO₂, C = carbon content of fuel by weight (0.76), and D = density of fuel, 4.2x10⁴ lb/10⁶ scf.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	E
	7,12- Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	E
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	E
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	E
120-12-7	Anthracene ^{b,c}	<2.4E-06	E
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	E
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	E
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	E
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	E
207-08-9	Benzo(k)fluoranthene ^{b,c}	<1.8E-06	E
106-97-8	Butane	2.1E+00	E
218-01-9	Chrysene ^{b,c}	<1.8E-06	E
53-70-3	Dibenzo(a,h)anthracene ^{b,c}	<1.2E-06	E
25321-22- 6	Dichlorobenzene ^b	1.2E-03	E
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	E
193-39-5	Indeno(1,2,3-cd)pyrene ^{b,c}	<1.8E-06	E
91-20-3	Naphthalene ^b	6.1E-04	E
109-66-0	Pentane	2.6E+00	E
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D
74-98-6	Propane	1.6E+00	Е

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
129-00-0	Pyrene ^{b, c}	5.0E-06	Е
108-88-3	Toluene ^b	3.4E-03	С

- ^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.
- b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.
- ^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.
- ^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

TABLE 1.4-4. EMISSION FACTORS FOR METALS FROM NATURAL GAS COMBUSTION^a

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
7440-38-2	Arsenic ^b	2.0E-04	Е
7440-39-3	Barium	4.4E-03	D
7440-41-7	Beryllium ^b	<1.2E-05	Е
7440-43-9	Cadmium ^b	1.1E-03	D
7440-47-3	Chromium ^b	1.4E-03	D
7440-48-4	Cobalt ^b	8.4E-05	D
7440-50-8	Copper	8.5E-04	C
7439-96-5	Manganese ^b	3.8E-04	D
7439-97-6	Mercury ^b	2.6E-04	D
7439-98-7	Molybdenum	1.1E-03	D
7440-02-0	Nickel ^b	2.1E-03	C
7782-49-2	Selenium ^b	<2.4E-05	Е
7440-62-2	Vanadium	2.3E-03	D
7440-66-6	Zinc	2.9E-02	E

Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. Emission factors preceded by a less-than symbol are based on method detection limits. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by l6. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020.
 Hazardous Air Pollutant as defined by Section 112(b) of the Clean Air Act.

References For Section 1.4

- 1. Exhaust Gases From Combustion And Industrial Processes, EPA Contract No. EHSD 71-36, Engineering Science, Inc., Washington, DC, October 1971.
- 2. *Chemical Engineers' Handbook, Fourth Edition*, J. H. Perry, Editor, McGraw-Hill Book Company, New York, NY, 1963.
- 3. Background Information Document For Industrial Boilers, EPA-450/3-82-006a, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1982.
- 4. *Background Information Document For Small Steam Generating Units*, EPA-450/3-87-000, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1987.
- 5. J. L. Muhlbaier, "Particulate and Gaseous Emissions From Natural Gas Furnaces and Water Heaters", *Journal Of The Air Pollution Control Association*, December 1981.
- 6. L. P. Nelson, *et al.*, *Global Combustion Sources Of Nitrous Oxide Emissions*, Research Project 2333-4 Interim Report, Sacramento: Radian Corporation, 1991.
- 7. R. L. Peer, *et al.*, *Characterization Of Nitrous Oxide Emission Sources*, Prepared for the U. S. EPA Contract 68-D1-0031, Research Triangle Park, NC: Radian Corporation, 1995.
- 8. S. D. Piccot, et al., Emissions and Cost Estimates For Globally Significant Anthropogenic Combustion Sources Of NO_x, N₂O, CH₄, CO, and CO₂, EPA Contract No. 68-02-4288, Research Triangle Park, NC: Radian Corporation, 1990.
- 9. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- 10. J. P. Kesselring and W. V. Krill, "A Low-NO_x Burner For Gas-Fired Firetube Boilers", *Proceedings: 1985 Symposium On Stationary Combustion NO_x Control, Volume 2*, EPRI CS-4360, Electric Power Research Institute, Palo Alto, CA, January 1986.
- 11. Emission Factor Documentation for AP-42 Section 1.4—Natural Gas Combustion, Technical Support Division, Office of Air Quality Planning and Standards, U. S. Environmental Protection Agency, Research Triangle Park, NC, 1997.
- 12. Alternate Control Techniques Document NO_x Emissions from Utility Boilers, EPA-453/R-94-023, U. S. Environmental Protection Agency, Research Triangle Park, NC, March 1994.

Log On

ENGINES FIND A DEALER PARTS & SUPPORT OEM RESOURC Enter Search

View All

Engine Quick Search

- SERIES ΑII
- DISPLACEMENT ΑII
- CRANKSHAFT DIRECTION ΑII
- USE All
- STARTING All
- Total Number of Results: 1

Reset Filters

The Next Generation of GX Engines.

GX270

With the GX270, you're looking at one of the best engines in the business. More power. Quieter performance. Lower fuel consumption. Lower emissions. Better features. Exceptional performance. Honda's GX series lives up to the legend, and then some.

COMMON APPLICATIONS

- Pressure washers
- Commercial lawn and garden equipment Tillers / cultivators
- Generators
- Construction / industrial equipment

Dimensions

- Agricultural equipment Small vehicles
- Water pumps

Owners Manual

- Engines
- Why choose Honda Engines
- Find brands powered by Honda
- Brochures

• Features •	Specs • Performance Curve
Engine Type	Air-cooled 4-stroke OHV
Bore x Stroke	77 X 58 mm
Displacement	270 cm3
Net Power Output*	8.5 HP (6.3 kW) @ 3,600 rpm
Net Torque	14.1 lb-ft (19.1 Nm) @ 2,500 rpm
PTO Shaft Rotation	Counterclockwise (from PTO shaft side)
Compression Ratio	8.5:1
Lamp/Charge coil options	25W, 50W / 1A, 3A, 10A, 18A
Carburetor	Butterfly Float Type
Ignition System	Digital CDI with variable ignition timing
Starting System	Recoil/electric
Lubrication System	Splash
Governor System	Centrifugal Mass Type
Air cleaner	Dual element
Oil Capacity	1.16 US qt (1.1 L)
Fuel Tank Capacity	5.6 U.S. qts (5.3 liters)
Fuel	Unleaded 86 octane or higher
Dry Weight	55 lb (25 kg)

Length (min) 15.0" (380 mm) Width (min) 16.9" (429 mm) Height (min) 16.6" (422 mm) PTO Shaft Options E type Tapered shaft H type Reduction type PTO L type Reduction type PTO P type (SAE) Q type Straight shaft R type Reduction type PTO V type Tapered shaft		
Height (min) PTO Shaft Options E type Tapered shaft H type Reduction type PTO L type Reduction type PTO P type Threaded type (SAE) Q type Straight shaft R type Reduction type PTO		
PTO Shaft Options E type Tapered shaft H type Reduction type PTO L type Reduction type PTO P type Threaded type (SAE) Q type Straight shaft R type PTO	Width (min)	16.9" (429 mm)
E type Tapered shaft H type Reduction type PTO L type Reduction type PTO P type Threaded type (SAE) Q type Straight shaft R type Reduction type PTO	Height (min)	16.6" (422 mm)
E type Tapered shaft H type Reduction type PTO L type Reduction type PTO P type Threaded type (SAE) Q type Straight shaft R type Reduction type PTO		
L type PTO Reduction type PTO P type Threaded type (SAE) Q type Straight shaft R type PTO		
P type Threaded type (SAE) Q type Straight shaft R type Reduction type PTO	H type	
Q type Straight shaft R type Reduction type PTO	L type	
R type Reduction type PTO	P type	
PTO PTO	Q type	Straight shaft
V type Tapered shaft	R type	
	V type	Tapered shaft

^{*}The SAE J1349 standard measures net horsepower with the manufacturer's production muffler and air cleaner in place. Net horsepower more closely correlates with the power the operator will experience when using a Honda engine powered product. The power rating of the engines indicated in this document measures the net power output at 3600 rpm (7000 rpm for model GXH50, GXV50, GX25 and GX35) and net torque at 2500 rpm, as tested on a production engine. Mass production engines may vary from this value. Actual power output for the engine installed in the final machine will vary depending on numerous factors, including the operation speed of the engine in application,

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diese (SCC 2-02-001-		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	$0.99^{\rm d}$	6.68 E-03	0.95	D
SO_x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	E
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.

b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.

c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.

d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2. SPECIATED ORGANIC COMPOUND EMISSION FACTORS FOR UNCONTROLLED DIESEL ENGINES^a

EMISSION FACTOR RATING: E

	Emission Factor (Fuel Input)
Pollutant	(lb/MMBtu)
Benzene ^b	9.33 E-04
Toluene ^b	4.09 E-04
Xylenes ^b	2.85 E-04
Propylene	2.58 E-03
1,3-Butadiene ^{b,c}	<3.91 E-05
Formaldehyde ^b	1.18 E-03
Acetaldehyde ^b	7.67 E-04
Acrolein ^b	<9.25 E-05
Polycyclic aromatic hydrocarbons (PAH)	
Naphthalene ^b	8.48 E-05
Acenaphthylene	<5.06 E-06
Acenaphthene	<1.42 E-06
Fluorene	2.92 E-05
Phenanthrene	2.94 E-05
Anthracene	1.87 E-06
Fluoranthene	7.61 E-06
Pyrene	4.78 E-06
Benzo(a)anthracene	1.68 E-06
Chrysene	3.53 E-07
Benzo(b)fluoranthene	<9.91 E-08
Benzo(k)fluoranthene	<1.55 E-07
Benzo(a)pyrene	<1.88 E-07
Indeno(1,2,3-cd)pyrene	<3.75 E-07
Dibenz(a,h)anthracene	<5.83 E-07
Benzo(g,h,l)perylene	<4.89 E-07
TOTAL PAH	1.68 E-04

a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430. b Hazardous air pollutant listed in the *Clean Air Act*. c Based on data from 1 engine.

Table 3.3-3. EFFECT OF VARIOUS EMISSION CONTROL TECHNOLOGIES ON DIESEL ENGINES $^{\rm a}$

	Affected Parameter		
Technology	Increase	Decrease	
Fuel modifications			
Sulfur content increase	PM, wear		
Aromatic content increase	PM, NO _x		
Cetane number		PM, NO _x	
10% and 90% boiling point		PM	
Fuel additives		PM, NO _x	
Water/Fuel emulsions		NO_x	
Engine modifications			
Injection timing retard	PM, BSFC	NO _x , power	
Fuel injection pressure	PM, NO _x		
Injection rate control		NO _x , PM	
Rapid spill nozzles		PM	
Electronic timing & metering		NO _x , PM	
Injector nozzle geometry		PM	
Combustion chamber modifications		NO _x , PM	
Turbocharging	PM, power	NO_x	
Charge cooling		NO_x	
Exhaust gas recirculation	PM, power, wear	NO_x	
Oil consumption control		PM, wear	
Exhaust after-treatment			
Particulate traps		PM	
Selective catalytic reduction		NO_{X}	
Oxidation catalysts		TOC, CO, PM	

a Reference 8. PM = particulate matter. BSFC = brake-specific fuel consumption.

References For Section 3.3

- 1. H. I. Lips, et al., Environmental Assessment Of Combustion Modification Controls For Stationary Internal Combustion Engines, EPA-600/7-81-127, U. S. Environmental Protection Agency, Cincinnati, OH, July 1981.
- 2. Standards Support And Environmental Impact Statement, Volume 1: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1979.
- 3. M. Hoggan, et al., Air Quality Trends In California's South Coast And Southeast Desert Air Basins, 1976-1990, Air Quality Management Plan, Appendix II-B, South Coast Air Quality Management District, July 1991.
- 4. R. B. Snyder, *Alternative Control Techniques Document .. NO_x Emissions From Stationary Reciprocating Internal Combustion Engines*, EPA-453/R-93-032, U. S. Environmental Protection Agency, Research Triangle Park, July 1993.
- 5. C. T. Hare and K. J. Springer, Exhaust Emissions From Uncontrolled Vehicles And Related Equipment Using Internal Combustion Engines, Part 5: Farm, Construction, And Industrial Engines, APTD-1494, U. S. Environmental Protection Agency, Research Triangle Park, NC, October 1973.
- 6. Pooled Source Emission Test Report: Oil And Gas Production Combustion Sources, Fresno And Ventura Counties, California, ENSR 7230-007-700, Western States Petroleum Association, Bakersfield, CA, December 1990.
- 7. W. E. Osborn and M. D. McDannel, *Emissions Of Air Toxic Species: Test Conducted Under AB2588 For The Western States Petroleum Association*, CR 72600-2061, Western States Petroleum Association, Glendale, CA, May 1990.
- 8. Technical Feasibility Of Reducing NO_x And Particulate Emissions From Heavy-duty Engines, CARB Contract A132-085, California Air Resources Board, Sacramento, CA, March 1992.
- 9. G. Marland and R. M. Rotty, *Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1951-1981*, DOE/NBB-0036 TR-003, Carbon Dioxide Research Division, Office of Energy Research, U. S. Department of Energy, Oak Ridge, TN, 1983.
- 10. A. Rosland, *Greenhouse Gas Emissions in Norway: Inventories and Estimation Methods*, Oslo: Ministry of Environment, 1993.
- 11. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- 12. G. Marland and R. M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1950-1982, Tellus 36B:232-261, 1984.
- 13. *Inventory Of U. S. Greenhouse Gas Emissions And Sinks: 1990-1991*, EPA-230-R-96-006, U. S. Environmental Protection Agency, Washington, DC, November 1995.
- 14. *IPCC Guidelines For National Greenhouse Gas Inventories Workbook*, Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development, Paris, France, 1995.

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID Tank Description Company Name

4a-13-OST-CV & 4b-13-OST-CV	
400 BBL Oil Storage Tank-Common Vent	
Paloma Natural Gas, LLC	

_ , _ ,	
Tank Orientation	Vertical
Tank Diameter (D ft)	12.00
Vertical Height/Horizontal Length (H _s ft)	20.00
Roof Height (H _R ft)	0.38
Max Liquid Height (H _{LX} ft)	19.00
Avg Liquid Height (H _L ft)	9.50
Breather Vent Pressure Setting (P BP psig)	
Breather Vent Vacuum Setting (P _{BV} psig)	
actual tank pressure (P _I psig)	0.0
Shell Paint Solar Absorptance (S A)	0.71
Roof Paint Solar Absorptance (R A)	0.71
breather vent pressure range (ΔP_B psi)	0.00
roof outage (H _{RO} ft)	0.1250

Gray - Medium	Tank Shell Color/Shade
average	Tank Shell Paint Condition
Gray - Medium	Tank Roof Color/Shade
average	Tank Roof Paint Condition
vertical tank with cone roof	Roof Type
no insulation	Tank Insulation
no	Tank Underground?
40,150.00	Annual Throughput (Q bbl/year)
104.89	Annual Turnovers, N
8,760	Annual Hours
2,148.85	tank max liquid volume (V _{LX} ft ³)
10.625	vapor space outage (H _{vO} ft)
1,201.66	vapor space volume (V _v ft ³)

Antoine constants (log $_{10}$, mmHg, $^{\circ}$ C)

component	mole%	MW	lb/mole	wt%	Α	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	0.000	•	0.000	0.000	•		

Baton Rouge, LA	Major City for Meterological Data
100	Site Elevation (ft)
14.643	Atmospheric Pressure (P _A psia)
Crude Oil	Table 7.1-2 Liquid
6.62	RVP*
43.0	API gravity*
60.0	°F basis for gv*
	bubble point psia
43.0	API gravity at 60F
46.5	API gravity at 100F
	_
0.75	Working Loss Product Factor (K _P)

working loss turnover factor K $_{\rm N}$	1.000

^{*}sales oil data determines RVP per API pub 4683

report 1 of 2

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature ($T_{AX}^{\circ}F$)	61.60	65.20	71.40	78.00	85.00	89.40	90.90	91.30	87.60	79.70	70.10	63.10	77.80
hourly average minimum ambient temperature (T $_{\rm AN}^{\circ}{\rm F})$	42.20	44.50	50.50	56.90	65.50	71.40	73.90	73.20	68.60	58.10	48.20	42.80	58.00
daily total solar insolation factor (I btu/ft ² day)	822	1075	1375	1736	1894	1914	1896	1813	1553	1291	983	784	1428
daily average ambient temperature ($T_{AA}^{\circ}F$)	51.90	54.85	60.95	67.45	75.25	80.40	82.40	82.25	78.10	68.90	59.15	52.95	67.90
liquid bulk temperature (T_B °F)	53.65	57.14	63.88	71.15	79.28	84.48	86.44	86.11	81.41	71.65	61.24	54.62	70.94
average vapor temperature (T_V $^{\circ}F$)	56.62	61.03	68.85	77.43	86.14	91.40	93.30	92.67	87.03	76.32	64.80	57.46	76.11
daily ambient temperature range (ΔT_A °R)	19.40	20.70	20.90	21.10	19.50	18.00	17.00	18.10	19.00	21.60	21.90	20.30	19.80
daily vapor temperature range (ΔT_V °R)	25.56	29.76	34.16	39.42	40.54	39.78	38.82	38.41	35.35	33.45	29.45	25.92	34.14
daily average liquid surface temperature ($T_{LA}^{\circ}F$)	55.14	59.08	66.37	74.29	82.71	87.94	89.87	89.39	84.22	73.99	63.02	56.04	73.52
daily maximum liquid surface temperature ($T_{LX}^{\circ}F$)	61.53	66.52	74.90	84.14	92.85	97.88	99.57	99.00	93.06	82.35	70.38	62.52	82.06
daily minimum liquid surface temperature (T_{LN} °F)	48.75	51.65	57.83	64.43	72.57	77.99	80.16	79.79	75.38	65.62	55.66	49.56	64.99
vapor pressure at daily avg liq surface temp T_{LA} (P_{VA} psia)	3.869	4.164	4.753	5.467	6.316	6.892	7.115	7.059	6.478	5.438	4.475	3.935	5.395
vapor pressure at daily max liq surface temp T_{LX} (P $_{VX}$ psia)	4.355	4.767	5.526	6.470	7.470	8.101	8.322	8.246	7.495	6.277	5.106	4.434	6.247
vapor pressure at daily min liq surface temp T_{LN} (P_{VN} psia)	3.428	3.623	4.068	4.591	5.306	5.829	6.049	6.010	5.572	4.690	3.907	3.482	4.637
daily vapor pressure range (ΔP_{V})	0.9267	1.1437	1.4580	1.8793	2.1639	2.2724	2.2732	2.2355	1.9236	1.5872	1.1983	0.9523	1.6097
vapor space expansion factor (K_E)	0.1357	0.1665	0.2124	0.2786	0.3346	0.3658	0.3726	0.3647	0.3006	0.2351	0.1742	0.1392	0.2381
vapor molecular weight (M_V lb/lbmole)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	19,144	17,291	19,144	18,526	19,144	18,526	19,144	19,144	18,526	19,144	18,526	19,144	225,402
monthly turnovers (N/month) with avg = total annual	8.91	8.05	8.91	8.62	8.91	8.62	8.91	8.91	8.62	8.91	8.62	8.91	104.89
vented vapor saturation factor (K _S)	0.3146	0.2990	0.2720	0.2452	0.2195	0.2049	0.1997	0.2010	0.2152	0.2462	0.2841	0.3110	0.2476
vent setting correction factor (KB)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _V lb/ft ³)	0.0349	0.0373	0.0419	0.0474	0.0539	0.0583	0.0600	0.0596	0.0552	0.0473	0.0398	0.0355	0.0469
standing storage losses (L_S lb/month & avg is lb/yr)	76.70	73.91	92.03	100.81	118.42	123.86	131.68	130.79	117.35	103.83	84.50	77.87	1231.75
working losses (L _W lb/month & avg is lb/yr)	501.37	483.18	601.64	659.00	774.12	809.72	860.79	855.04	767.13	678.79	552.38	509.06	8052.22
total losses (L_T lb/month & avg is lb/yr)	578.07	557.10	693.68	759.81	892.54	933.58	992.47	985.83	884.48	782.62	636.87	586.93	9283.97
max hourly Q in bbl/hour	25.73	25.73	25.73	25.73	25.73	25.73	25.73	25.73	25.73	25.73	25.73	25.73	
max hourly working loss at P $_{\rm VX}$ & Q/hr & K $_{\rm N}$ =1 (L $_{\rm W}$ lb/hr)	0.674	0.719	0.809	0.915	1.040	1.125	1.157	1.149	1.065	0.912	0.767	0.684	
breathing/standing loss (L_S lb/hr)	0.103	0.110	0.124	0.162	0.198	0.219	0.223	0.219	0.179	0.140	0.117	0.105	
max hourly total loss $(L_T lb/hr)$	0.777	0.829	0.932	1.078	1.239	1.343	1.380	1.368	1.244	1.052	0.885	0.789	

 $\begin{array}{|c|c|c|c|c|} \textbf{L}_{S} \text{ sum months} & \textbf{L}_{T} \text{ sum months} \\ \hline \textbf{1231.75} & \textbf{8052.22} & \textbf{9283.97} \\ \end{array}$

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions	Summary:	avg lbs/hr	max lbs/hr	lbs/yr
	Standing/Breathing Loss L _s	0.139	0.223	1,213.269
	Working Loss L _W	0.905	1.157	7,931.402
	Total Loss L _T	1.044	1.380	9,144.671

max hourly total loss may not add up to $L_{\rm S}$ + $L_{\rm W}$ as their max values may be in different months

VOC Profile Speciation Report

Profile Name : Fixed Roof Tank - Crude Oil Production

Profile Number : 0296 Data Quality : C

Control Device : Uncontrolled Reference(s) : 59, 72

Data Source : Engineering evaluation of test data and literature data

SCC Assignments: 40301010, 40301011, 40301012, 40301109

Saroad	CAS Number	Name	Spec_MW	Spec_WT	Peak
43115		C-7 CYCLOPARAFFINS	98.19	1.30	
43116		C-8 CYCLOPARAFFINS	112.23	0.50	
43122		ISOMERS OF PENTANE	72.15	1.50	
43201	74-82-8	METHANE	16.04	6.20	
43202	74-84-0	ETHANE	30.07	5.60	
43204	74-98-6	PROPANE	44.09	17.60	
43212	106-97-8	N-BUTANE	58.12	27.10	
43214	75-28-5	ISO-BUTANE	58.12	1.50	
43220	109-66-0	N-PENTANE	72.15	14.60	
43231	110-54-3	HEXANE	86.17	7.90	
43232	142-82-5	HEPTANE	100.20	9.20	
43233	111-65-9	OCTANE	114.23	6.90	
45201	71-43-2	BENZENE	78.11	0.10	
TOTAL				100.00	

HOUSTON LABORATORIES

8820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0801

CERTIFICATE OF ANALYSIS Certificate of Analysis: 2013030083-001A

Customer:

Goodrich Petroleum

Report Date:

10/04/13

Attn:

Bobby Coppedge

PO Box 988

PO / Ref. No.:

Tatum, TX 75691

Company:

Goodrich Petroleu

Sample Of:

Liquid

Field:

Crosby 12-1H #1

Sample Date/Time:

3/7/2013

Well:

Wildcat Field

Sample Psig & Temp:

220 psia @ 131 °F

Sampled By:

TC-SPL

Sample Point:

Cylinder #:

Comments:

EOS 2-stage flash, 2nd stage Flash

2-Stage Flash, 2nd stage flashed from 50 psia @ 120°F to 15 psia @ 72°F

Analytical Data

Parameters	Results	Units	Method	Lab Tech.	Date Analyzed
Shrinkage Factor	0.9902		Shrink-EOS	CS	10/04/13
Flash Factor	15.615	Cu.Ft./STBbl.	Shrink-EOS	CS	10/04/13

Hydrocarbon Laboratory Manager

Tank Oil Flash Analysis

CERTIFICATE OF ANALYSIS Certificate of Analysis: 2013030083-001A

HOUSTON LABORATORIES

8820 INTERCHANGE DRIVE HOUSTON, TEXAS 77054 PHONE (713) 660-0901

Customer:

Goodrich Petroleum

Report Date:

10/04/13

Attn:

Bobby Coppedge

PO Box 988

PO / Ref. No.:

Tatum, TX 75691

Company:

Goodrich Petroleum

Sample Of:

Liquid

Field:

Crosby 12-1H #1

Sample Date/Time:

03/07/13

Well:

Wildcat Field

Sample Psig & Temp:

220 psia @ 131 °F

Sampled By:

Cylinder#:

TC-SPL

Sample Point: Comments:

EOS 2nd Stage Flash Gas

2-Stage Flash, 2nd stage flashed from 50 psia @ 120°F to 15 psia @ 72°F

	MOL %	WEIGHT %	GPM's @ 14.73
NITROGEN	1 1 1 1		
METHANE	25.146	10.444	
GO2	5.379	6.129	
ETHANE	21,176	16,485	8.078
PROPANE	26.614	30.383	9.854
I-BUTANE	3.814	5.739	1.189
N-BUTANE	10.652	16.029	3,445
I-PENTANE	2.873	5.367	0.800
N-PENTANE	2.339	4.369	0.658
I-HEXANE	0.672	1.499	0.165
N-HEXANE	0.386	0.862	0.096
2,2,4 TRIMETHYLPENTANE	0.003	0.008	0.001
BENZENE	0.089	0,179	0.032
HEPTANES	0.508	1.271	0.112
TOLUENE	0.046	0.111	0.014
OCTANES	0,172	0.500	0.034
E-BENZENE	0.003	0.009	0,001
m,o,&p-XYLENE	0.017	0.045	0.004
NONANES	0.031	0.102	0.006
DECANES PLUS	0.081	0.468	0.013
TOTALS	100.000	100.000	24,503

CALCULATED VALUES

CALCULATED MOLECULAR WEIGHT TOTAL 38.62 REAL DRY BTU AT 14.73 PSIA, 60 DEG.F 1908.4 REAL WET BTU AT 14.73 PSIA, 60 DEG.F 1875.2 RELATIVE DENSITY 1.5451 COMPRESSIBILITY FACTOR 0.98542

GPM's @ 14.73 psia, 60 Deg.F

C2+ 24.503

C5+ 1.938

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID

Tank Description

Company Name

4c-13-OST-CV & 4d-13-OST-CV	
400 BBL Oil Storage Tank-Common Vent	
Paloma Natural Gas, LLC	

Tank Orientation	Vertical
Tank Diameter (D ft)	12.00
Vertical Height/Horizontal Length (H $_{\rm S}$ ft)	20.00
Roof Height (H $_R$ ft)	0.38
Max Liquid Height (H_{LX} ft)	19.00
Avg Liquid Height (H $_{\scriptscriptstyle L}$ ft)	9.50
Breather Vent Pressure Setting (P $_{\it BP}$ psig)	
Breather Vent Vacuum Setting (P_{BV} psig)	
actual tank pressure (P ₁ psig)	0.0
Shell Paint Solar Absorptance (S $_{\rm A}$)	0.71
Roof Paint Solar Absorptance (R $_{\rm A}$)	0.71
breather vent pressure range (ΔP_B psi)	0.00
roof outage (H $_{RO}$ ft)	0.1250

Tank Shell Color/Shade	Gray - Medium
Tank Shell Paint Condition	average
Tank Roof Color/Shade	Gray - Medium
Tank Roof Paint Condition	average
Roof Type	vertical tank with cone roof
Tank Insulation	no insulation
Tank Underground?	no
Annual Throughput (Q bbl/year)	43,800.00
Annual Turnovers, N	114.43
Annual Hours	8,760
tank max liquid volume (V _{LX} ft ³)	2,148.85
vapor space outage (H _{vO} ft)	10.625
vapor space volume (V _V ft ³)	1,201.66

Tank contents (if not selected from Table 7.1-2):

Antoine constants (log $_{10}$, mmHg, $^{\circ}$ C)

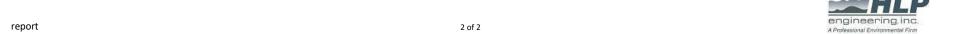
component	mole%	MW	lb/mole	wt%	Α	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	0.000		0.000	0.000			

Baton Rouge, LA	Major City for Meterological Data
100	Site Elevation (ft)
14.643	Atmospheric Pressure (P _A psia)
Crude Oil	Table 7.1-2 Liquid
6.62	RVP*
43.0	API gravity*
60.0	°F basis for gv*
	bubble point psia
43.0	API gravity at 60F
46.5	API gravity at 100F
	•
0.75	Working Loss Product Eactor (K)

working loss turnover factor K_N

report 1 of 2

^{*}sales oil data determines RVP per API pub 4683


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T_{AX} °F)	61.60	65.20	71.40	78.00	85.00	89.40	90.90	91.30	87.60	79.70	70.10	63.10	77.80
hourly average minimum ambient temperature ($T_{AN}^{\circ}F$)	42.20	44.50	50.50	56.90	65.50	71.40	73.90	73.20	68.60	58.10	48.20	42.80	58.00
daily total solar insolation factor (I btu/ft² day)	822	1075	1375	1736	1894	1914	1896	1813	1553	1291	983	784	1428
daily average ambient temperature ($T_{AA}^{\circ}F$)	51.90	54.85	60.95	67.45	75.25	80.40	82.40	82.25	78.10	68.90	59.15	52.95	67.90
liquid bulk temperature (T_B °F)	53.65	57.14	63.88	71.15	79.28	84.48	86.44	86.11	81.41	71.65	61.24	54.62	70.94
average vapor temperature (T_V °F)	56.62	61.03	68.85	77.43	86.14	91.40	93.30	92.67	87.03	76.32	64.80	57.46	76.11
daily ambient temperature range (ΔT_A °R)	19.40	20.70	20.90	21.10	19.50	18.00	17.00	18.10	19.00	21.60	21.90	20.30	19.80
daily vapor temperature range (ΔT_V °R)	25.56	29.76	34.16	39.42	40.54	39.78	38.82	38.41	35.35	33.45	29.45	25.92	34.14
daily average liquid surface temperature ($T_{LA}^{\circ}F$)	55.14	59.08	66.37	74.29	82.71	87.94	89.87	89.39	84.22	73.99	63.02	56.04	73.52
daily maximum liquid surface temperature ($T_{LX}^{\circ}F$)	61.53	66.52	74.90	84.14	92.85	97.88	99.57	99.00	93.06	82.35	70.38	62.52	82.06
daily minimum liquid surface temperature ($T_{LN}\ ^{\circ}F$)	48.75	51.65	57.83	64.43	72.57	77.99	80.16	79.79	75.38	65.62	55.66	49.56	64.99
vapor pressure at daily avg liq surface temp T_{LA} (P_{VA} psia)	3.869	4.164	4.753	5.467	6.316	6.892	7.115	7.059	6.478	5.438	4.475	3.935	5.395
vapor pressure at daily max liq surface temp T_{LX} (P $_{VX}$ psia)	4.355	4.767	5.526	6.470	7.470	8.101	8.322	8.246	7.495	6.277	5.106	4.434	6.247
vapor pressure at daily min liq surface temp $T_{LN} (P_{VN} psia)$	3.428	3.623	4.068	4.591	5.306	5.829	6.049	6.010	5.572	4.690	3.907	3.482	4.637
daily vapor pressure range (ΔP_{V})	0.9267	1.1437	1.4580	1.8793	2.1639	2.2724	2.2732	2.2355	1.9236	1.5872	1.1983	0.9523	1.6097
vapor space expansion factor (K _E)	0.1357	0.1665	0.2124	0.2786	0.3346	0.3658	0.3726	0.3647	0.3006	0.2351	0.1742	0.1392	0.2381
vapor molecular weight (M_V lb/lbmole)	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00	50.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	20,884	18,863	20,884	20,210	20,884	20,210	20,884	20,884	20,210	20,884	20,210	20,884	245,893
monthly turnovers (N/month) with avg = total annual	9.72	8.78	9.72	9.41	9.72	9.41	9.72	9.72	9.41	9.72	9.41	9.72	114.43
vented vapor saturation factor (K _S)	0.3146	0.2990	0.2720	0.2452	0.2195	0.2049	0.1997	0.2010	0.2152	0.2462	0.2841	0.3110	0.2476
vent setting correction factor (K _B)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0349	0.0373	0.0419	0.0474	0.0539	0.0583	0.0600	0.0596	0.0552	0.0473	0.0398	0.0355	0.0469
standing storage losses (L $_{\rm S}$ lb/month & avg is lb/yr)	76.70	73.91	92.03	100.81	118.42	123.86	131.68	130.79	117.35	103.83	84.50	77.87	1231.75
working losses (L _W lb/month & avg is lb/yr)	546.95	527.11	656.34	718.91	844.50	883.33	939.04	932.77	836.87	740.49	602.59	555.34	8784.24
total losses (L_T lb/month & avg is lb/yr)	623.65	601.02	748.37	819.72	962.91	1007.20	1070.72	1063.56	954.22	844.33	687.09	633.21	10015.99
max hourly Q in bbl/hour	28.07	28.07	28.07	28.07	28.07	28.07	28.07	28.07	28.07	28.07	28.07	28.07	
max hourly working loss at P $_{\rm VX}$ & Q/hr & K $_{\rm N}$ =1 (L $_{\rm W}$ lb/hr)	0.735	0.784	0.882	0.998	1.135	1.227	1.262	1.254	1.162	0.995	0.837	0.746	
breathing/standing loss (L _S lb/hr)	0.103	0.110	0.124	0.162	0.198	0.219	0.223	0.219	0.179	0.140	0.117	0.105	
max hourly total loss (L _T lb/hr)	0.838	0.894	1.006	1.161	1.333	1.446	1.486	1.472	1.341	1.135	0.954	0.851	

 $\begin{array}{|c|c|c|c|c|} \textbf{L}_{S} \text{ sum months} & \textbf{L}_{T} \text{ sum months} \\ \hline \textbf{1231.75} & \textbf{8784.24} & \textbf{10015.99} \\ \end{array}$

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions	Summary:	avg lbs/hr	max lbs/hr	lbs/yr
	Standing/Breathing Loss L _s	0.139	0.223	1,213.269
	Working Loss L _W	0.988	1.262	8,652.439
	Total Loss L _T	1.126	1.486	9,865.708

max hourly total loss may not add up to ${\sf L_S}+{\sf L_W}$ as their max values may be in different months

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID Tank Description Company Name

4e-13-WST-CV, 4f-13-WST-CV, 4g-14-OST-CV, & 4h-14-OST-CV	
400 BBL Water Storage Tank-Common Vent	
Paloma Natural Gas, LLC	

_ , _ ,	
Tank Orientation	Vertical
Tank Diameter (D ft)	12.00
Vertical Height/Horizontal Length (H _s ft)	20.00
Roof Height (H _R ft)	0.38
Max Liquid Height (H _{LX} ft)	19.00
Avg Liquid Height (H _L ft)	9.50
Breather Vent Pressure Setting (P BP psig)	
Breather Vent Vacuum Setting (P _{BV} psig)	
actual tank pressure (P _I psig)	0.0
Shell Paint Solar Absorptance (S A)	0.71
Roof Paint Solar Absorptance (R A)	0.71
breather vent pressure range (ΔP_B psi)	0.00
roof outage (H _{RO} ft)	0.1250

Gray - Medium	Tank Shell Color/Shade
average	Tank Shell Paint Condition
Gray - Medium	Tank Roof Color/Shade
average	Tank Roof Paint Condition
vertical tank with cone roof	Roof Type
no insulation	Tank Insulation
no	Tank Underground?
54,750.00	Annual Throughput (Q bbl/year)
143.04	Annual Turnovers, N
8,760	Annual Hours
2,148.85	tank max liquid volume (V_{LX} ft ³)
10.625	vapor space outage (H _{vo} ft)
1,201.66	vapor space volume ($V_V ft^3$)

Antoine constants (log $_{10}$, mmHg, $^{\circ}$ C)

Tank contents (if not selected from Table 7.1-2):

component	mole%	MW	lb/mole	wt%	Α	В	С
Water	100.000	18.015	18.01500	100.00000	8.108	1750.300	235.000
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000		18.015	100.000			

Major City for Meterological Data	Baton Rouge, LA
Site Elevation (ft)	100
Atmospheric Pressure (P _A psia)	14.643
Table 7.1-2 Liquid	
RVP*	
API gravity*	
°F basis for gv*	
bubble point psia	
API gravity at 60F	
API gravity at 100F	
Working Loss Product Factor (K P)	0.75

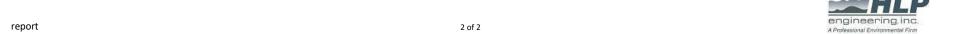
working loss turnover factor K_N

*sales oil data determines RVP per API pub 4683

1.000

18.015 100.000

report 1 of 2


	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T_{AX} °F)	61.60	65.20	71.40	78.00	85.00	89.40	90.90	91.30	87.60	79.70	70.10	63.10	77.80
hourly average minimum ambient temperature ($T_{AN}^{\circ}F$)	42.20	44.50	50.50	56.90	65.50	71.40	73.90	73.20	68.60	58.10	48.20	42.80	58.00
daily total solar insolation factor (I btu/ft² day)	822	1075	1375	1736	1894	1914	1896	1813	1553	1291	983	784	1428
daily average ambient temperature ($T_{AA}^{\circ}F$)	51.90	54.85	60.95	67.45	75.25	80.40	82.40	82.25	78.10	68.90	59.15	52.95	67.90
liquid bulk temperature (T_B $^\circ$ F)	53.65	57.14	63.88	71.15	79.28	84.48	86.44	86.11	81.41	71.65	61.24	54.62	70.94
average vapor temperature (T_V $^{\circ}F$)	56.62	61.03	68.85	77.43	86.14	91.40	93.30	92.67	87.03	76.32	64.80	57.46	76.11
daily ambient temperature range (ΔT_A °R)	19.40	20.70	20.90	21.10	19.50	18.00	17.00	18.10	19.00	21.60	21.90	20.30	19.80
daily vapor temperature range (ΔT_V °R)	25.56	29.76	34.16	39.42	40.54	39.78	38.82	38.41	35.35	33.45	29.45	25.92	34.14
daily average liquid surface temperature (T_{LA} °F)	55.14	59.08	66.37	74.29	82.71	87.94	89.87	89.39	84.22	73.99	63.02	56.04	73.52
daily maximum liquid surface temperature (T_{LX} °F)	61.53	66.52	74.90	84.14	92.85	97.88	99.57	99.00	93.06	82.35	70.38	62.52	82.06
daily minimum liquid surface temperature (T_{LN} °F)	48.75	51.65	57.83	64.43	72.57	77.99	80.16	79.79	75.38	65.62	55.66	49.56	64.99
vapor pressure at daily avg liq surface temp T_{LA} (P_{VA} psia)	0.215	0.248	0.320	0.420	0.554	0.655	0.696	0.685	0.581	0.416	0.285	0.222	0.409
vapor pressure at daily max liq surface temp T_{LX} (P_{VX} psia)	0.270	0.322	0.429	0.580	0.763	0.891	0.938	0.921	0.768	0.547	0.368	0.280	0.542
vapor pressure at daily min liq surface temp T_{LN} (P_{VN} psia)	0.170	0.189	0.237	0.300	0.396	0.475	0.510	0.504	0.435	0.312	0.219	0.175	0.305
daily vapor pressure range (ΔP_{V})	0.1007	0.1331	0.1916	0.2805	0.3672	0.4161	0.4278	0.4178	0.3330	0.2352	0.1488	0.1051	0.2369
vapor space expansion factor (K _E)	0.0566	0.0666	0.0783	0.0936	0.1008	0.1024	0.1013	0.0999	0.0887	0.0792	0.0667	0.0575	0.0807
vapor molecular weight (M _V lb/lbmole)	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02	18.02
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	26,105	23,579	26,105	25,263	26,105	25,263	26,105	26,105	25,263	26,105	25,263	26,105	307,367
monthly turnovers (N/month) with avg = total annual	12.15	10.97	12.15	11.76	12.15	11.76	12.15	12.15	11.76	12.15	11.76	12.15	143.04
vented vapor saturation factor (K _S)	0.8920	0.8775	0.8471	0.8088	0.7622	0.7306	0.7185	0.7215	0.7533	0.8104	0.8616	0.8888	0.8127
vent setting correction factor (KB)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _v lb/ft ³)	0.0007	0.0008	0.0010	0.0013	0.0017	0.0020	0.0021	0.0021	0.0018	0.0013	0.0009	0.0007	0.0013
standing storage losses (L_S lb/month & avg is lb/yr)	1.71	1.76	2.49	3.10	4.16	4.71	5.16	5.09	4.22	3.18	2.16	1.76	39.50
working losses (L _W lb/month & avg is lb/yr)	13.69	14.14	19.93	24.86	33.36	37.79	41.36	40.79	33.83	25.49	17.29	14.12	316.64
total losses (L_T lb/month & avg is lb/yr)	15.39	15.90	22.42	27.96	37.52	42.51	46.51	45.88	38.05	28.66	19.45	15.88	356.14
max hourly Q in bbl/hour	35.09	35.09	35.09	35.09	35.09	35.09	35.09	35.09	35.09	35.09	35.09	35.09	
max hourly working loss at P_{VX} & Q/hr & $K_{N}\text{=}1$ (L_{W} lb/hr)	0.018	0.021	0.027	0.035	0.045	0.052	0.056	0.055	0.047	0.034	0.024	0.019	
breathing/standing loss (L_S lb/hr)	0.002	0.003	0.003	0.005	0.007	0.007	0.008	0.008	0.006	0.004	0.003	0.002	
max hourly total loss (L_T lb/hr)	0.021	0.024	0.030	0.040	0.051	0.060	0.063	0.062	0.053	0.039	0.027	0.021	

 $\begin{array}{|c|c|c|c|c|} \textbf{L}_{S} \text{ sum months} & \textbf{L}_{T} \text{ sum months} \\ \hline & 39.50 & 316.64 & 356.14 \\ \hline \end{array}$

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions	Summary:	avg lbs/hr	max lbs/hr	lbs/yr
	Standing/Breathing Loss L _s	0.004	0.008	36.870
	Working Loss L _W	0.034	0.056	295.580
	Total Loss L _T	0.038	0.063	332.449

max hourly total loss may not add up to ${\sf L_S}+{\sf L_W}$ as their max values may be in different months

PROC APT 1944 C.2

DRILLING-AND-PRODUCTION PRACTICE

1944

LIBRARY
AMERICAN PETROLEUM INSTITUTE

Sponsored by the

CENTRAL COMMITTEE ON DRILLING AND PRODUCTION PRACTICE

DIVISION OF PRODUCTION
AMERICAN PETROLEUM INSTITUTE

Published by

AMERICAN PETROLEUM INSTITUTE

50 West 50th Street

New York 20, N. Y.

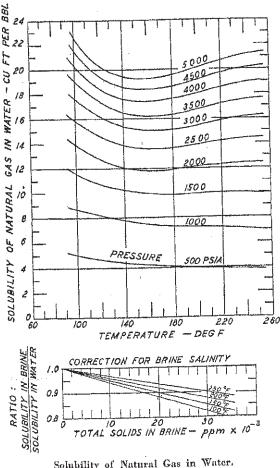
To calculate the properties of the interstitial water in the reservoir, it is observed from Table 4 that the change in formation volume of pure water at 3,000 psi, absolute, and 200 deg F (due to the solution of 15.4 cu ft per bbl of gas) is 1,0380 minus 1.0271, or 0.0059 bbl per bbl. As the solubility in the interstitial water is only 13.6 cu ft per bbl, the change in formation volume would be expected to be $\frac{13.6}{15.4}$ (0.0059), or 0.0052.

Hence, the formation volume of the interstitial water is calculated to be 1.0271 plus 0.0052, or 1.0323 bbl per bbl. A similar calculation at a reservoir pressure of 2,000 psi, absolute, yields a formation volume of 1.0340 bbl per bbl—which indicates that, even though the interstitial water contains less dissolved gas at 2,000 psi, absolute, than it did at 3,000 psi, absolute, its volume is greater at the lower pressure. This result is interesting, because it is opposite to the behavior of natural-gas-crude-oil mixtures.

The compressibility of the saturated interstitial water is found from Fig. 2 by multiplying the correction factor for the gas solubility, 1.12 for a 13.6-cu-ft-per-bbl mixture, times the compressibility, 3.12 times 10-6, of pure water, which gives 3.50 times 10-6 bbl per bbl per lb per sq in.

The use of data on the formation volumes of the saturated interstitial water, together with the data on the compressibilities, permits accurate accounting of the interstitial-water behavior for material-balance calculations when the accuracy of the other data justifies the additional refinement.

TABLE 4


Formation Volumes of Pure Water and Mixtures
of Natural Gas and Water

	Formation	1 Volumes-	-Barrel Pe	er Barrel
Saturation	100	150	200	250
Pressure	Deg F	Deg F.	Deg F	Deg F
(PSI, Absolute)	1	Tatural Gas	and Water	ķ.
5,000	0.9989	1.0126	1.0301	1.0522
4,000	1,0003	1.0140	1.0316	1.0587
3,000	1.0017	1.0154	1.0330	1.0552
2,000	1.0031	1.0168	1.0345	1.0568
1,000	1.0045	1.0188	1,0361	1.0584
Pressure (PSI, Absolute)		Pure V	Vater *	
5,000	0.9910	1.0039	1,0210	1.0418
4,000	0.9938	1.0067	1.0240	1.0452
3,000	0.9966	1.0095	1.0271	1.0487
2,000	0.9995	1.0125	1.0304	1.0523
1,000	1.0025	1.0153	1.0335	1,0560
Vapor pre sure of	es-			
water	1.0056	1.0187	1,0370	1,0598

* See reference No. 3.

Water production from so-called "clean" gas wells or high gas-oil-ratio (distillate) wells may be a combination of the water that exists as vapor in the reservoir gas and liquid water that is brought to the surface by mechanical entrainment in the gas. The water produced by condensation is free of salts, whereas the entrained water may contain a considerable amount of dissolved salts.

The amount of water that will be produced from a well as vapor can be determined from Table 5 and Fig. 8. For example, consider the case of a gas reservoir at 3,000 psi, absolute, and 200 deg F, in which the interstitial water has a salinity of 30,000 ppm. From Table 5 and Fig. 3, the amount of water vapor in the formation gas is shown to be 0.82 bbl per 1,000 MCF of dry gas when vaporized from pure water, or 0.82 times 0.93, which equals 0.76 bbl per 1,000 MCF for the gas in equilibrium with the saline interstitial water. If the foregoing reservoir gas is put through a trap operating at 500 psi, absolute, and 100 deg F, the amount of water which can remain as vapor in the gas at these conditions is shown in Table 5 to be 0.31 bbl per 1,000

Solubility of Natural Gas in Water. FIG. 1

Weighted Average for Storage Tank Vapors to Control Flare (EPN: 5-13-F)

Total Working & Standing Losses: 5.08 lb/hr
Total Oil Flash Vapors: 474.76 SCFH
Total Brine Flash Vapors: 27.52 SCFH

	37.60	SCFH	474.76	SCFH	27.52	SCFH	Weighted Avg.					
	Vol %	SCFH	Vol %	SCFH	Vol %	SCFH						Heating
Compound	Total Working &	Total Working &	Total Oil Flash	Total Oil Flash	Total Brine Flash	Total Brine Flash	Total Vol %	MW	Wt of Gas	Wt %	dH	Value
	Standing Losses	Standing Losses	Vapors	Vapors	Vapors	Vapors						Value
Nitrogen		0.000	0.000	0.000	1.295	0.356	0.066	28.020	0.018	0.047	0	0.00
Water		0.000	0.000	0.000	0.000	0.000	0.000	18.000	0.000	0.000	0	0.00
Carbon Dioxide		0.000	5.379	25.537	5.874	1.617	5.030	44.010	2.214	5.661	0	0.00
Methane	19.820	7.452	25.146	119.383	47.022	12.940	25.890	16.043	4.154	10.622	1010	261.49
Ethane	9.551	3.591	21.176	100.535	12.137	3.340	19.906	30.070	5.986	15.307	1770	352.25
Propane	20.470	7.696	26.614	126.350	14.845	4.085	25.586	44.097	11.283	28.854	2516	643.76
Iso-Butane	1.324	0.498	3.814	18.105	2.376	0.654	3.567	58.123	2.073	5.302	3252	115.99
N-Butane	23.913	8.991	10.652	50.571	7.748	2.132	11.427	58.123	6.642	16.986	3262	372.80
Iso-Pentane	1.066	0.401	2.873	13.640	2.664	0.733	2.737	72.150		5.049	4001	109.48
N-Pentane	10.378	3.902	2.339	11.105	2.363	0.650	2.900	72.150	2.092	5.351	4009	116.26
Methylcyclopentane		0.000	0.672	3.190	1.128	0.310	0.648	70.134	0.455	1.163	3764	24.41
Other/Iso Hexane		0.000	0.386	1.833	0.577	0.159	0.369	86.177	0.318	0.813	4750	17.52
N-Hexane	4.702	1.768	0.000	0.000	0.000	0.000	0.327	86.177	0.282	0.722	4756	15.57
Benzene	0.066	0.025	0.089	0.423	0.079	0.022	0.087	78.114	0.068	0.174	3742	3.25
CycloHexane		0.000	0.000	0.000	0.225	0.062	0.011	84.161	0.010	0.025	4482	0.51
Heptanes	4.709	1.770	0.508	2.412	0.963	0.265	0.824	100.204	0.825	2.111	5503	45.33
Methylcyclohexane		0.000	0.000	0.000	0.000	0.000	0.000	98.188	0.000	0.000	5216	0.00
Toluene		0.000	0.046	0.218	0.055	0.015	0.043	92.141	0.040	0.102	4475	1.94
2,2,4-Trimethylpentane		0.000	0.003	0.014	0.440	0.121	0.025	114.231	0.029	0.073	6232	1.56
Ethylbenzene		0.000	0.172	0.817	0.038	0.010	0.153	106.167	0.163	0.416	5222	8.00
Xylenes		0.000	0.003	0.014	0.010	0.003	0.003	106.167	0.003	0.009	5209	0.16
Octanes	3.098	1.165	0.017	0.081	0.027	0.007	0.232	114.231	0.265	0.678	6249	14.50
Nonanes		0.000	0.031	0.147	0.091	0.025	0.032	128.258	0.041	0.105	6997	2.23
Decanes		0.000	0.081	0.385	0.043	0.012	0.073	142.285	0.104	0.267	7743	5.68
Other NM/NE HC	0.904	0.340	0.000	0.000	0.000	0.000	0.063	102.090	0.064	0.164	5200	3.27
Totals	100.000	37.60	100.000	474.76	100.000	27.52	100.000		39.103	100.000		2115.99

Total Stream Flowrate: 539.88 SCFH SG 1.3484

Specific Gravity of Tank Vapor Stream Heating Value of Tank Vapor Stream

1.7685 2891.91

CERTIFICATE OF ANALYSIS Gertificate of Analysis: 2013030083-001A

Customer

Goodrich Petroleum

Report Date:

10/04/13

Attn:

Bobby Coppedge

PO Ref. No.:

PO Box 988

Talum, TX 75694

Company:

Geodrich Petroleum

Sample Of

Liguid

Field:

Grosby 12-11-#1

Sample Date/Time:

3013

Well :

Wildcat Field

Sample Psig & Temp: 220 psia @d31°F

Sampled By:

TC-SPL

Sample Point: Spot

Gylinder#:

Comments:

EOS 2 Stage Flash 1st Stage Results

2-Stage Flash, 1st Stage flashed from 220 psla @ 131*F-to-50 psla @ :120°F

Analytical Data

		 		Lab	Date
Parameters	Results	Units	Method		Analyzed
Shrinkage Factor	0.9630	DV TOWNS AND REPERMINENT OF THE PERMINE	Shrink-EOS	-seg	10/04/13:
Flash Factor	69.768	Cu:Fl/STBbl	Shrink-EOS	seg	10/04/13

Hydrocarbon Laboratory Manager

Heater Treater-Flash Gas

Certificate of Analysis Number: 2030-16110134-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520 Phone 337-896-3055

Nov. 18, 2016

James Shumaker Goodrich Petroleum PO Box 740 Liberty, MS 39645

Field: AMITE COUNTY, MS Station Name: CH LEWIS 30-19 H1

Station Number: 2309

Sample Point: HEATER TREATER

Analyzed: 11/15/2016 09:33:30 by GR8

100.000 100.000

Sampled By: CF-SPL Sample Of: Gas Spot Sample Date: 11/04/2016

Sample Conditions: 40.1 psig, @ 94.0 °F

Method: GPA 2286 Cylinder No: 7030-7063

Analytical Data

Components	Mol. %	Wt. %	GPM at 15.025 psia		
Hydrogen Sulfide	0.001	0.001		GPM TOTAL C2+	11.030
Nitrogen	1.162	1.127			
Methane	55.402	30.776			
Carbon Dioxide	6.544	9.972			
Ethane	12.738	13.262	3.498		
Propane	13.476	20.576	3.812		
Iso-Butane	1.765	3.552	0.593		
n-Butane	5.055	10.173	1.637		
Iso-Pentane	1.354	3.383	0.508		
n-Pentane	1.116	2.788	0.415		
i-Hexanes	0.408	1.128	0.152		
n-Hexane	0.195	0.583	0.083		
Benzene	0.030	0.082	0.009		
Cyclohexane	0.122	0.356	0.043		
i-Heptanes	0.267	0.841	0.107		
n-Heptane	0.055	0.188	0.026		
Toluene	0.022	0.069	0.007		
i-Octanes	0.164	0.603	0.075		
n-Octane	0.015	0.062	0.008		
Ethylbenzene	NIL	NIL	NIL		
Xylenes	0.014	0.053	0.005		
i-Nonanes	0.036	0.157	0.018		
n-Nonane	0.010	0.044	0.006		
i-Decanes	0.044	0.196	0.024		
n-Decane	NIL	0.001	NIL		
Jndecanes	0.004	0.021	0.003		
Dodecanes	0.001	0.006	0.001		
Tridecanes	NIL	NIL	NIL		
Tetradecanes Plus	NIL	NIL	NIL		
	100.000	400.000	11.000		

11.030

Certificate of Analysis

Number: 2030-16110134-001A

Carencro Laboratory 4790 NE Evangeline Thruway Carencro, LA 70520 Phone 337-896-3055

Nov. 18, 2016

James Shumaker Goodrich Petroleum PO Box 740 Liberty, MS 39645

Field: AMITE COUNTY, MS Station Name: CH LEWIS 30-19 H1

Station Number: 2309

Sample Point: HEATER TREATER

Analyzed: 11/15/2016 09:33:30 by GR8

Sampled By: CF-SPL

Sample Of: Gas Spot

Sample Date: 11/04/2016

Sample Conditions: 40.1 psig, @ 94.0 °F

Method: GPA 2286 Cylinder No: 7030-7063

Calculated Physical PropertiesTotalCalculated Molecular Weight28.880

GPA 2172-09 Calculation:

Calculated Gross BTU per ft³ @ 15.025 psia & 60°FReal Gas Dry BTU1557.7Water Sat. Gas Base BTU1531.1Relative Density Real Gas1.0036Compressibility Factor0.9932

Comments: H2S 12 ppm

LELAP Certificate 05023

June 1998 RG-109

Air Permit Technical Guidance for Chemical Sources:

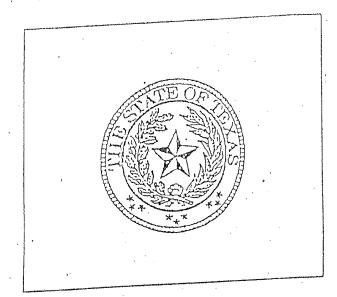
Flares and Vapor Oxidizers

Flare Emission Factors

The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.


Table 4. Flare Factors

Waste Stream	Destruction/Removal Efficiency (DRE)						
VOC	98 percent (gen	eric)					
	contain no elem following comp	99 percent for compounds containing no more than 3 carbons that contain no elements other than carbon and hydrogen in addition to the following compounds: methanol, ethanol, propanol, ethylene oxide and propylene oxide					
H ₂ S	98 percent						
NH,	case by case						
СО	case by case						
Air Contaminants	Emission Facto	ors					
thermal NO _x	steam-assist:	high Btu Iow Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu				
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu				
fuel NO _x	NO _x is 0.5 wt pe	ercent of inlet N	NH ₃ , other fuels case by case				
со	steam-assist:	high Btu low Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu				
	other: high Btu 0.2755 lb/MMBtu low Btu 0.5496 lb/MMBtu						
PM	none, required to be smokeless						
SO ₂	100 percent S in	fuel to SO ₂					

Technical Guidance Package for Chemical Sources

Flare Sources

Texas
Natural
Resource
Conservati
on
Commissio

77

John Hall, Chairman Pam Reed, Commissioner Peggy Garber, Commissioner Dan Pearson, Executive Director

Compiled by TNRCC Chemical Section Engineers
November 1994

Published and distributed by the Texas Natural Resource Contervation Commission Post Office Box 13087
Austin, Texas 78711-3087
(512) 239-1250

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The commission would appreciate acknowledgement.

The TNRCC is an equal opportunity/affirmative action employer. The agency does not allow discrimination on the basis of race, color, religion, national origin, sex,

greater than standard destruction efficiencies (>SDE) are claimed. The determinations shall indicate the maximum or minimum values required for flare performance at the claimed efficiency. The determinations shall be made during the testing protocols used to demonstrate >SDE.

- A. Tip Velocities and Flow rates (maximum)
- B. Heating Values (minimum).
- 4. The applicant shall install, calibrate, operate and maintain a flow meter to monitor actual stream flow rates to, and calculate tip velocities of, flares for which >SDE are claimed.
- 5. Records shall be maintained which indicate on a continuous basis the flow rates and heating values of the streams directed to the flares for which >SDE are claimed.
- 6. Flow rates of streams to flares for which >SDE are claimed shall not exceed the lesser of the indicated maxima; (1) flow rates which produce the tip velocities specified in 40 CFR correspond to the demonstrated during testing to correspond to the demonstrated flare efficiency.
- 7. Tip velocities of flares for which >SDE are claimed shall not exceed the lesser of the indicated maxima; (1) tip velocities exceed in 40 CFR 60.18, or (2) tip velocities demonstrated specified in 40 CFR 60.18, or (2) tip velocities demonstrated during testing to correspond to the demonstrated flare efficiency.
- 8. Heating values of streams directed to flares for which >SDE are claimed shall be no less than the greater of the indicated minima; (1) 300 BTU/scf for streams directed to non-assisted flares and 400 BTU/scf for streams directed to assisted flares, or (2) heating values demonstrated during testing to correspond to the demonstrated flare efficiency.
- 9. The applicant shall provide vendor data supportive of the claimed flare efficiency.

NO, and CO Emissions

The following NO, and CO factors were derived by the Chemical Section of the New Source Review Division based on data published in the 1983 CMA document entitled, A Report on A Flare Efficiency in the 1983 CMA document entitled, be used in estimating NO, and CO. Study. These factors should be used in estimating NO, and CO. emissions rather than the emission factors found in Section 11.5 of AP-42.

. Table 3: Flare Factors.

		4 4 (*)	CO
Type	Naste Gas	NO 167MM Btu	Ib/MM Btu
The state of the s		0.0485	0.3503
Steam Assisted	High Btu (>1000/scf)		
	18808tu (192-	0.0680	0.3465
And the second s	High Btu (>1000/scf)	0.1380	0.2755
Air & Nonassisted		0.0641	0.5496
Air & Nonassisted	18807scf (184-		

Example 2:

For the sample case, calculate the mole percent of each constituent in the waste stream for both the average and maximum scenarios by dividing the individual flow rates by the total flow rates and multiplying by 100 percent.

Table 4: Calculation of constituents in mole percent.

Table 4: Calc	ulation of co	nstituents in	Maxi miim	
	Average Case		Waximum Case	
	scfm	mole %	scim	· mole §
		5.08	. 12.70	5.08
Butane+:	10.16	. 2.97	7.43	2.97
Propylene ·	5.94	2.54	6.35	2.54
Propane	5.08		105.93	42.37
Ethylene	84.74	42.37	46.50	18.64
Ethane	37.28	18.64	and the second s	11.02
Eydrogen	.22.04	11.02	27.55	
Ammonia	4.24	2.12	5.30	2.12
	30.50	15.26	38.13	15.26
Inerts	200.00	100.00	250.00	100.00
Totals	200.00			

In this case, our calculations are simplified since the average and maximum case waste streams have the same compositions. If they were of different composition, the following heating value calculations would be required for both cases. Note that the maximum case shows the maximum vent stream to the flare under normal operating conditions for the purpose of calculating emissions from the flare (upset and maintenance conditions are not considered).

Next, estimate the net, or lower, heating value of the waste stream

Table 13.5-1 (English Units). THC, NOx AND SOOT EMISSIONS FACTORS FOR FLARE OPERATIONS FOR CERTAIN CHEMICAL MANUFACTURING PROCESSES^a

Pollutant	SCC ^e	Emissions Factor Value	Emissions Factor Units	Grade or Representativeness
THC, elevated flares ^c	30190099;	0.14 ^{b,f}	1b/10 ⁶ Btu	В
THC, enclosed ground flares ^{g,h} Low Percent Load ⁱ	30119701; 30119705; 30119709; 30119741	8.37 ^j or 3.88e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
THC, enclosed ground flares ^{g,h} Normal to High Percent Load ⁱ	30119741	2.56 ^j or 1.20e-3 ^f	lb/10 ⁶ scf gas burned lb/10 ⁶ Btu heat input	Moderately
Nitrogen oxides, elevated flares ^d		$0.068^{b,k}$	lb/10 ⁶ Btu	В
Soot, elevated flares ^d		$0 - 274^{b}$	μg/L	В

- ^a All of the emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the THC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factors are representative of controlled emissions rates for THC. These values are not representative of the uncontrolled THC routed to the flare from the associated process, and as such, they may not be appropriate for estimating the uncontrolled THC emissions or potential to emit from the associated process.
- ^b Reference 1. Based on tests using crude propylene containing 80% propylene and 20% propane.
- ^c Measured as methane equivalent. The THC emissions factor may not be appropriate for reporting volatile organic compounds (VOC) emissions when a VOC emissions factor exists.
- d Soot in concentration values: nonsmoking flares, 0 micrograms per liter (μg/L); lightly smoking flares, 40 μg/L; average smoking flares, 177 μg/L; and heavily smoking flares, 274 μg/L.
- ^e See Table 13.5-4 for a description of these SCCs.
- ^f Factor developed using the lower (net) heating value of the vent gas.
- g THC measured as propane by US EPA Method 25A.
- h These factors apply to well operated ground flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >200 btu/scf net heating value in the vent gas and less than the specified maximum exit velocity. The emissions factor data set had an average destruction efficiency of 99.99%. Based on tests using pure propylene fuel. References 12 through 33 and 39 through 45.
- The dataset for these tests were broken into four different test conditions: ramping back and forth between 0 and 30% of load; ramping back and forth between 30% and 70% of load; ramping back and forth between 70% and 100% of load; and a fixed rate maximum load condition. Analyses determined that only the first condition was statistically different. Low percent load is represented by a unit operating at approximately less than 30% of maximum load.
- Heat input is an appropriate basis for combustion emissions factor. However, based on available data, heat input data is not always known, but gas flowrate is generally available. Therefore, the emissions factor is presented in two different forms.
- ^k Factor developed using the higher (gross) heating value of the vent gas.

Table 13.5-2 (English Units). VOC and CO EMISSIONS FACTORS FOR ELEVATED FLARE OPERATIONS FOR CERTAIN REFINERY AND CHEMICAL MANUFACTURING PROCESSES^{a,b}

Pollutant	SCC ^e	Emissions Factor (lb/10 ⁶ Btu) ^f	Representativeness
Volatile organic compounds ^c	30190099; 30600904; 30119701; 30119705; 30119709; 30119741; 30119799; 30130115;	0.66	Poorly
Carbon monoxide ^d	30600201; 30600401; 30600508; 30600903; 30600999; 30601701; 30601801; 30688801; 40600240	0.31	Poorly

The emissions factors in this table represent the emissions exiting the flare. Since the flare is not the originating source of the VOC emissions, but rather the device controlling these pollutants routed from a process at the facility, the emissions factor is representative of controlled emissions rates for VOC. This values is not representative of the uncontrolled VOC routed to the flare from the associated process, and as such, it may not be appropriate for estimating the uncontrolled VOC emissions or potential to emit from the associated process.

b These factors apply to well operated flares achieving at least 98% destruction efficiency and operating in compliance with the current General Provisions requirements of 40 CFR Part 60, i.e. >300 btu/scf net heating value in the vent gas and less than the specified maximum flare tip velocity. The VOC emissions factor data set had an average destruction efficiency of 98.9%, and the CO emissions factor data set had an average destruction efficiency of 99.1% (based on test reports where destruction efficiency was provided). These factors are based on steam-assisted and air-assisted flares burning a variety of vent gases.

^c References 4 through 9 and 11.

^d References 1, 4 through 8, and 11.

^e See Table 13.5-4 for a description of these SCCs.

^f Factor developed using the lower (net) heating value of the vent gas.

CORRELATION EQUATIONS TO PREDICT REID VAPOR PRESSURE AND PROPERTIES OF GASEOUS EMISSIONS FOR EXPLORATION

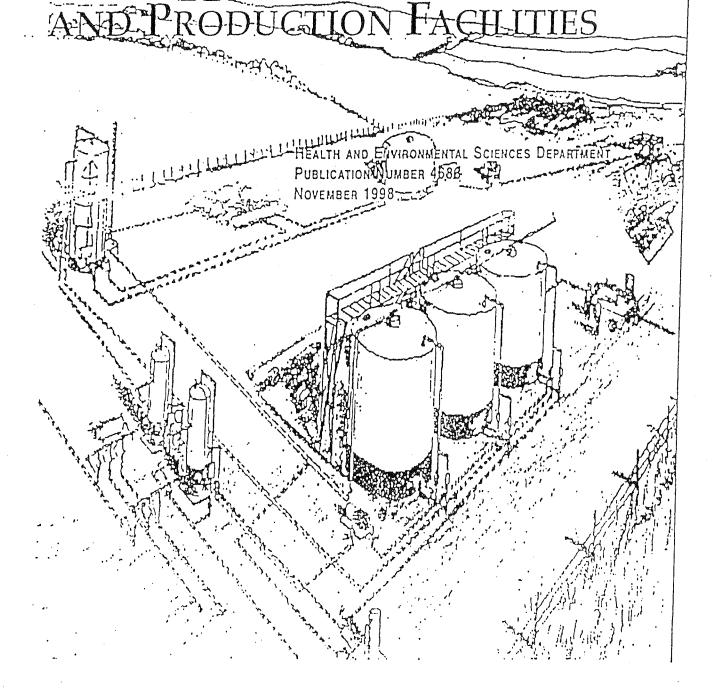


Table 3-2 summarizes Pearson correlation coefficients (r) calculated for the sales oil RVP relative to the other variables. Better correlations are indicated as |r| approaches 1. Table 3-2 shows that sales oil APIG is the best predictor of RVP. (Note that the sales oil bubble point is an equally good predictor, r = 0.78.)

Table 3-2. Single-parameter correlation coefficients for RVP.

	Pearson Correlation
Variable	With RVP
SP	0.52
In(SP)	0.51
ST	-0.37
APIG	0.79

REGRESSION ANALYSIS

· Carrie Barrer

A multivariate linear regression was developed, represented by the equation shown below.

$$RVP = 0.003 + 0.075 \ln(SP) - 0.016 ST + 0.165 APIG$$

(Equation 3-4)

The correlation coefficient for Equation 3-4 (r = 0.80) is not significantly better than the single-parameter coefficient for sales oil APIG shown in Table 3-2. Therefore, the single-parameter fit based on sales oil APIG is recommended for use (see Figure 3-2).

$$RVP = -1.699 + 0.179 APIG$$

(Equation 3-5)

The error of the estimate (E) is one measure of the performance of a model or assumption, where the error equals the observed value (Obs) less the estimated value (Est), E = Obs - Est. In Figure 3-2, it is obvious that the error associated with the regression line is much less than the error associated with the default assumption, RVP = 5 psia.

$$P = \exp\left\{ \left[\left(\frac{2,799}{T + 459.6} \right) - 2.227 \right] \log_{10}(RVP) - \left(\frac{7,261}{T + 459.6} \right) + 12.82 \right\}$$

Where:

P = stock true vapor pressure, in pounds per square inch absolute.

T = stock temperature, in degrees Fahrenheit.

RVP = Reid vapor pressure, in pounds per square inch.

Note: This equation was derived from a regression analysis of points read off Figure 7.1-13a over the full range of Reid vapor pressures, slopes of the ASTM distillation curve at 10 percent evaporated, and stock temperatures. In general, the equation yields P values that are within +0.05 pound per square inch absolute of the values obtained directly from the nomograph.

Figure 7.1-13b. Equation for true vapor pressure of crude oils with a Reid vapor pressure of 2 to 15 pounds per square inch.⁴ See note at Figure 7.1-13a.

$$P = exp \left\{ \left[0.7553 - \left(\frac{413.0}{T + 459.6} \right) \right] S^{0.5} log_{10} (RVP) - \left[1.854 - \left(\frac{1,042}{T + 459.6} \right) \right] S^{0.5} log_{10} (RVP) \right\} \right\}$$

+
$$\left[\left(\frac{2,416}{T+459.6} \right) - 2.013 \right] \log_{10}(RVP) - \left(\frac{8,742}{T+459.6} \right) + 15.64 \right]$$

Where:

P = stock true vapor pressure, in pounds per square inch absolute.

T = stock temperature, in degrees Fahrenheit.

RVP = Reid vapor pressure, in pounds per square inch.

S = slope of the ASTM distillation curve at 10 percent evaporated, in degrees Fahrenheit per percent.

Note: This equation was derived from a regression analysis of points read off Figure 7.1-14a over the full range of Reid vapor pressures, slopes of the ASTM distillation curve at 10 percent evaporated, and stock temperatures. In general, the equation yields P values that are within +0.05 pound per square inch absolute of the values obtained directly from the nomograph.

Figure 7.1-14b. Equation for true vapor pressure of refined petroleum stocks with a Reid vapor pressure of 1 to 20 pounds per square inch.⁴ See note at Figure 7.1-14a.

A = 15.64 - 1.854 S^{0.5} - (0.8742-0.3280 S^{0.5})ln(RVP) B = 8,742 - 1,042 S^{0.5} - (1,049-179.4 S^{0.5})ln(RVP) where:

RVP = stock Reid vapor pressure, in pounds per square inch

In = natural logarithm function

S = stock ASTM-D86 distillation slope at 10 volume percent evaporation (°F/vol %)

Figure 7.1-15. Equations to determine vapor pressure constants A and B for refined petroleum stocks. ²²

Table 7.1-2. PROPERTIES (M_V, M_L, P_{VA}, W_L) OF SELECTED PETROLEUM LIQUIDS^{a, e}

Petroleum Liquid Mixture	Vapor Molecular Weight ^a	Liquid Molecular Weight ^b	Liquid Density a	ASTM D86 Distillation Slope ^c	Vapor Pressure Equation Constant ^d	Vapor Pressure Equation Constant ^d	True Vapor Pressure (at 60 °F)
	M_V	M_L	W_L	S	\boldsymbol{A}	В	P_{VA}
	lb/lb-mole	lb/lb-mole	lb/gal	°F/vol %	dimensionless	°R	psia
Midcontinent Crude Oil	50	207	7.1	1	Figure 7.1-16	Figure 7.1-16	ı
Refined Petroleum Stocks	1	1	-		Figure 7.1-15	Figure 7.1-15	ı
Motor Gasoline RVP 13	62	92	5.6	3.0	11.644	5043.6	7.0
Motor Gasoline RVP 10	66 °	92	5.6	3.0	11.724	5237.3	5.2
Motor Gasoline RVP 7	68	92	5.6	3.0	11.833	5500.6	3.5
Light Naphtha RVP 9- 14	1	1	-	3.5	1	_	ı
Naphtha RVP 2-8	-	-	_	2.5	1	_	1
Aviation Gasoline	_	_	-	2.0	-	_	-
Jet Naphtha (JP-4)	80	120	6.4	_	11.368	5784.3	1.3
Jet Kerosene (Jet A)	130	162	7.0	_	12.390	8933.0	0.008
No. 2 Fuel Oil (Diesel)	130	188	7.1	_	12.101	8907.0	0.006
No. 6 Fuel Oil ^f	130	387	7.9	_	10.781	8933.0	0.002
Vacuum Residual Oilg	190	387	7.9	_	10.104	10,475.5	0.00004

^a References 10 and 11

for crude oil, see Figure 7.1-16;

for Jet Naphtha, Jet Kerosene, and No. 2 Fuel Oil, see Barnett and Hibbard 10;

for No. 6 Fuel Oil.²²

^b Liquid molecular weights from "Memorandum from Patrick B. Murphy, Radian/RTP to James F. Durham, EPA/CPB Concerning Petroleum Refinery Liquid HAP and Properties Data, August 10, 1993," as adopted in versions 3.1 and 4.0 of EPA's TANKS software.

^c Reference 4.

^d For motor gasolines, see Figure 7.1-15;

^e Alternatively, in the absence of measured data, a value of 66 lb/lb-mole may be assumed for all gasolines, in that the variability shown as a function of RVP is speculative.

^f This is for a blend of Vacuum Residual Oil with a light distillate cutter stock, or similar mixture. Vapor pressure constants given will result in higher vapor pressure values than shown previously in AP-42 for Residual Oil No. 6.

^g This is the straight residue from the bottom of the vacuum distillation column, prior to any further processing or blending. Properties given for Vacuum Residual Oil are those given for Residual Oil No. 6 previously in AP-42.

5.2 Transportation And Marketing Of Petroleum Liquids¹⁻³

5.2.1 General

The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source of evaporation loss. Crude oil is transported from production operations to a refinery by tankers, barges, rail tank cars, tank trucks, and pipelines. Refined petroleum products are conveyed to fuel marketing terminals and petrochemical industries by these same modes. From the fuel marketing terminals, the fuels are delivered by tank trucks to service stations, commercial accounts, and local bulk storage plants. The final destination for gasoline is usually a motor vehicle gasoline tank. Similar distribution paths exist for fuel oils and other petroleum products. A general depiction of these activities is shown in Figure 5.2-1.

5.2.2 Emissions And Controls

Evaporative emissions from the transportation and marketing of petroleum liquids may be considered, by storage equipment and mode of transportation used, in four categories:

- 1. Rail tank cars, tank trucks, and marine vessels: loading, transit, and ballasting losses.
- 2. Service stations: bulk fuel drop losses and underground tank breathing losses.
- 3. Motor vehicle tanks: refueling losses.
- 4. Large storage tanks: breathing, working, and standing storage losses. (See Chapter 7, "Liquid Storage Tanks".)

Evaporative and exhaust emissions are also associated with motor vehicle operation, and these topics are discussed in AP-42 *Volume II: Mobile Sources*.

5.2.2.1 Rail Tank Cars, Tank Trucks, And Marine Vessels -

Emissions from these sources are from loading losses, ballasting losses, and transit losses.

5.2.2.1.1 Loading Losses -

Loading losses are the primary source of evaporative emissions from rail tank car, tank truck, and marine vessel operations. Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. These vapors are a composite of (1) vapors formed in the empty tank by evaporation of residual product from previous loads, (2) vapors transferred to the tank in vapor balance systems as product is being unloaded, and (3) vapors generated in the tank as the new product is being loaded. The quantity of evaporative losses from loading operations is, therefore, a function of the following parameters:

- Physical and chemical characteristics of the previous cargo;
- Method of unloading the previous cargo;
- Operations to transport the empty carrier to a loading terminal;
- Method of loading the new cargo; and
- Physical and chemical characteristics of the new cargo.

The principal methods of cargo carrier loading are illustrated in Figure 5.2-2, Figure 5.2-3, and Figure 5.2-4. In the splash loading method, the fill pipe dispensing the cargo is lowered only part way into the cargo tank. Significant turbulence and vapor/liquid contact occur during the splash

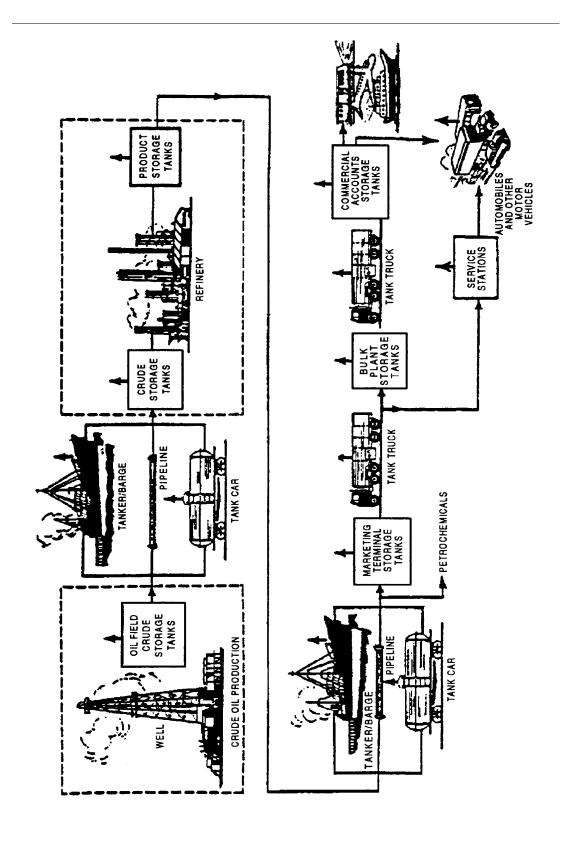


Figure 5.2-1. Flow sheet of petroleum production, refining, and distribution systems. (Points of organic emissions are indicated by vertical arrows.)

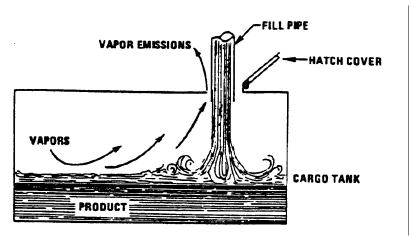


Figure 5.2-2. Splash loading method.

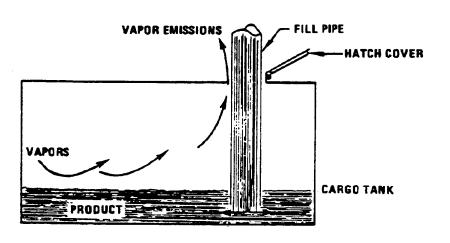


Figure 5.2-3. Submerged fill pipe.

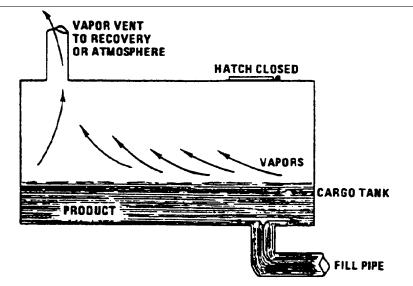


Figure 5.2-4. Bottom loading.

loading operation, resulting in high levels of vapor generation and loss. If the turbulence is great enough, liquid droplets will be entrained in the vented vapors.

A second method of loading is submerged loading. Two types are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The recent loading history of a cargo carrier is just as important a factor in loading losses as the method of loading. If the carrier has carried a nonvolatile liquid such as fuel oil, or has just been cleaned, it will contain vapor-free air. If it has just carried gasoline and has not been vented, the air in the carrier tank will contain volatile organic vapors, which will be expelled during the loading operation along with newly generated vapors.

Cargo carriers are sometimes designated to transport only one product, and in such cases are practicing "dedicated service". Dedicated gasoline cargo tanks return to a loading terminal containing air fully or partially saturated with vapor from the previous load. Cargo tanks may also be "switch loaded" with various products, so that a nonvolatile product being loaded may expel the vapors remaining from a previous load of a volatile product such as gasoline. These circumstances vary with the type of cargo tank and with the ownership of the carrier, the petroleum liquids being transported, geographic location, and season of the year.

One control measure for vapors displaced during liquid loading is called "vapor balance service", in which the cargo tank retrieves the vapors displaced during product unloading at bulk plants or service stations and transports the vapors back to the loading terminal. Figure 5.2-5 shows a tank truck in vapor balance service filling a service station underground tank and taking on displaced gasoline vapors for return to the terminal. A cargo tank returning to a bulk terminal in vapor balance service normally is saturated with organic vapors, and the presence of these vapors at the start of submerged loading of the tanker truck results in greater loading losses than encountered during nonvapor balance, or "normal", service. Vapor balance service is usually not practiced with marine vessels, although some vessels practice emission control by means of vapor transfer within their own cargo tanks during ballasting operations, discussed below.

Emissions from loading petroleum liquid can be estimated (with a probable error of ± 30 percent)⁴ using the following expression:

$$L_{L} = 12.46 \frac{\text{SPM}}{\text{T}} \tag{1}$$

where:

 L_L = loading loss, pounds per 1000 gallons (lb/10³ gal) of liquid loaded

S = a saturation factor (see Table 5.2-1)

P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")

M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")

T = temperature of bulk liquid loaded, $^{\circ}$ R ($^{\circ}$ F + 460)

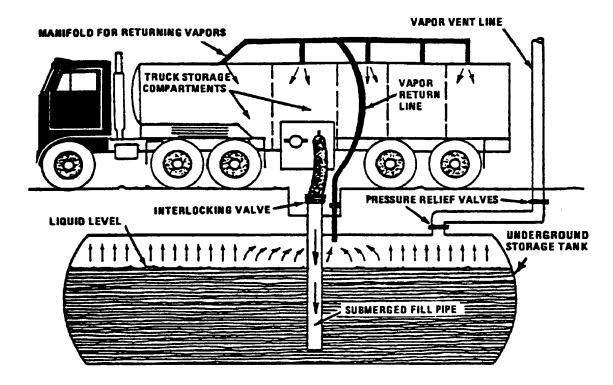


Figure 5.2-5. Tank truck unloading into a service station underground storage tank and practicing "vapor balance" form of emission control.

Table 5.2-1. SATURATION (S) FACTORS FOR CALCULATING PETROLEUM LIQUID LOADING LOSSES

Cargo Carrier	Mode Of Operation	S Factor
Tank trucks and rail tank cars	Submerged loading of a clean cargo tank	0.50
	Submerged loading: dedicated normal service	0.60
	Submerged loading: dedicated vapor balance service	1.00
	Splash loading of a clean cargo tank	1.45
	Splash loading: dedicated normal service	1.45
	Splash loading: dedicated vapor balance service	1.00
Marine vessels ^a	Submerged loading: ships	0.2
	Submerged loading: barges	0.5

^a For products other than gasoline and crude oil. For marine loading of gasoline, use factors from Table 5.2-2. For marine loading of crude oil, use Equations 2 and 3 and Table 5.2-3.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. Table 5.2-1 lists suggested saturation factors.

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in Equation 1 by an overall reduction efficiency term:

$$\left(1 - \frac{\text{eff}}{100}\right)$$

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment. The latter captures organic vapors displaced during loading operations and recovers the vapors by the use of refrigeration, absorption, adsorption, and/or compression. The recovered product is piped back to storage. Vapors can also be controlled through combustion in a thermal oxidation unit, with no product recovery. Figure 5.2-6 demonstrates the recovery of gasoline vapors from tank trucks during loading operations at bulk terminals. Control efficiencies for the recovery units range from 90 to over 99 percent, depending on both the nature of the vapors and the type of control equipment used.⁵⁻⁶ However, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 99.2 percent for tanker trucks passing the MACT-level annual leak test (not more than 1 inch water column pressure change in 5 minutes after pressurizing to 18 inches water followed by pulling a vacuum of 6 inches water).⁷ A collection efficiency of 98.7 percent (a 1.3 percent leakage rate) should be assumed for trucks passing the NSPS-level annual test (3 inches pressure change) A collection efficiency of 70 percent should be assumed for trucks not passing one of these annual leak tests⁶.

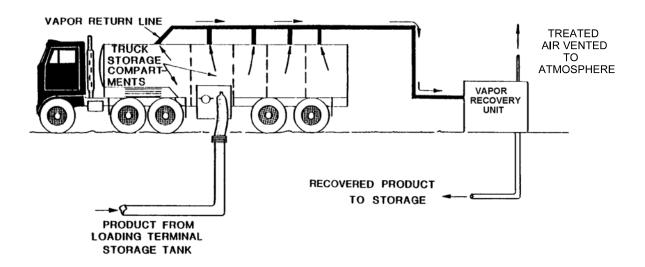


Figure 5.2-6. Tank truck loading with vapor recovery.

Sample Calculation -

Loading losses (L_I) from a gasoline tank truck in dedicated vapor balance service and practicing vapor recovery would be calculated as follows, using Equation 1:

Design basis -

Cargo tank volume is 8000 gal Gasoline Reid vapor pressure (RVP) is 9 psia Product temperature is 80°F Vapor recovery efficiency is 95 percent Vapor collection efficiency is 98.7 percent (NSPS-level annual leak test)

Loading loss equation -

$$L_{L} = 12.46 \frac{SPM}{T} \left(1 - \frac{eff}{100} \right)$$

where:

S = saturation factor (see Table 5.2-1) - 1.00P = true vapor pressure of gasoline = 6.6 psia M = molecular weight of gasoline vapors = 66 T = temperature of gasoline = 540°R

eff = overall reduction efficiency (95 percent control x 98.7 percent collection) = 94 percent

$$L_{L} = 12.46 \frac{(1.00)(6.6)(66)}{540} \left(1 - \frac{94}{100}\right)$$

$$= 0.60 \text{ lb/} 10^{3} \text{ gal}$$

Total loading losses are:

$$(0.60 \text{ lb}/10^3 \text{ gal}) (8.0 \text{ x } 10^3 \text{ gal}) = 4.8 \text{ pounds (lb)}$$

Measurements of gasoline loading losses from ships and barges have led to the development of emission factors for these specific loading operations. These factors are presented in Table 5.2-2 and should be used instead of Equation 1 for gasoline loading operations at marine terminals. Factors are expressed in units of milligrams per liter (mg/L) and pounds per 1000 gallons (lb/10³ gal).

Table 5.2-2 (Metric And English Units). VOLATILE ORGANIC COMPOUND (VOC) EMISSION FACTORS FOR GASOLINE LOADING OPERATIONS AT MARINE TERMINALS^a

		Ships/Ocean Barges ^b		Ba	rges ^b
Vessel Tank Condition	Previous Cargo	mg/L Transferred	lb/10³ gal Transferred	mg/L Transferred	lb/10³ gal Transferred
Uncleaned	Volatile ^c	315	2.6	465	3.9
Ballasted	Volatile	205	1.7	d	d
Cleaned	Volatile	180	1.5	ND	ND
Gas-freed	Volatile	85	0.7	ND	ND
Any condition	Nonvolatile	85	0.7	ND	ND
Gas-freed	Any cargo	ND	ND	245	2.0
Typical overall situation ^e	Any cargo	215	1.8	410	3.4

References 2,9. Factors are for both VOC emissions (which excludes methane and ethane) and total organic emissions, because methane and ethane have been found to constitute a negligible weight fraction of the evaporative emissions from gasoline. ND = no data.

^d Barges are usually not ballasted.

In addition to Equation 1, which estimates emissions from the loading of petroleum liquids, Equation 2 has been developed specifically for estimating emissions from the loading of crude oil into ships and ocean barges:

$$C_{L} = C_{A} + C_{G} \tag{2}$$

where:

 $\begin{array}{l} C_L = total \ loading \ loss, \ lb/10^3 \ gal \ of \ crude \ oil \ loaded \\ C_A = arrival \ emission \ factor, \ contributed \ by \ vapors \ in \ the \ empty \ tank \ compartment \ before \ loading, \ lb/10^3 \ gal \ loaded \ (see \ Note \ below) \\ C_G = generated \ emission \ factor, \ contributed \ by \ evaporation \ during \ loading, \ lb/10^3 \ gal \ loaded \end{array}$

Note: Values of C_A for various cargo tank conditions are listed in Table 5.2-3.

b Ocean barges (tank compartment depth about 12.2 m [40 ft]) exhibit emission levels similar to tank ships. Shallow draft barges (compartment depth 3.0 to 3.7 m [10 to 12 ft]) exhibit higher emission levels.

Volatile cargoes are those with a true vapor pressure greater than 10 kilopascals (kPa) (1.5 psia).

Based on observation that 41% of tested ship compartments were uncleaned, 11% ballasted, 24% cleaned, and 24% gas-freed. For barges, 76% were uncleaned.

5.2-3 (English Units). AVERAGE ARRIVAL EMISSION FACTORS, C_A, FOR CRUDE OIL LOADING EMISSION EQUATION^a

Ship/Ocean Barge Tank Condition	Previous Cargo	Arrival Emission Factor, lb/10 ³ gal
Uncleaned	Volatile ^b	0.86
Ballasted	Volatile	0.46
Cleaned or gas-freed	Volatile	0.33
Any condition	Nonvolatile	0.33

^a Arrival emission factors (C_A) to be added to generated emission factors (C_G) calculated in Equation 3 to produce total crude oil loading loss (C_L). Factors are for total organic compounds; VOC emission factors average about 15% lower, because VOC does not include methane or ethane.

^b Volatile cargoes are those with a true vapor pressure greater than 10 kPa (1.5 psia).

This equation was developed empirically from test measurements of several vessel compartments.⁸ The quantity C_G can be calculated using Equation 3:

$$C_G = 1.84 (0.44 P - 0.42) \frac{MG}{T}$$
 (3)

where:

P = true vapor pressure of loaded crude oil, psia

M = molecular weight of vapors, lb/lb-mole

G = vapor growth factor = 1.02 (dimensionless)

T = temperature of vapors, $^{\circ}$ R ($^{\circ}$ F + 460)

Emission factors derived from Equation 3 and Table 5.2-3 represent total organic compounds. Volatile organic compound (VOC) emission factors (which exclude methane and ethane because they are exempted from the regulatory definition of "VOC") for crude oil vapors have been found to range from approximately 55 to 100 weight percent of these total organic factors. When specific vapor composition information is not available, the VOC emission factor can be estimated by taking 85 percent of the total organic factor.³

5.2.2.1.2 Ballasting Losses -

Ballasting operations are a major source of evaporative emissions associated with the unloading of petroleum liquids at marine terminals. It is common practice to load several cargo tank compartments with sea water after the cargo has been unloaded. This water, termed "ballast", improves the stability of the empty tanker during the subsequent voyage. Although ballasting practices vary, individual cargo tanks are ballasted typically about 80 percent, and the total vessel 15 to 40 percent, of capacity. Ballasting emissions occur as vapor-laden air in the "empty" cargo tank is displaced to the atmosphere by ballast water being pumped into the tank. Upon arrival at a loading port, the ballast water is pumped from the cargo tanks before the new cargo is loaded. The ballasting of cargo tanks reduces the quantity of vapors returning in the empty tank, thereby reducing the quantity of vapors emitted during subsequent tanker loading. Regulations administered by the U. S. Coast Guard require that, at marine terminals located in ozone nonattainment areas, large tankers with crude oil washing systems contain the organic vapors from ballasting. This is accomplished principally by displacing the vapors during ballasting into a cargo tank being simultaneously unloaded. In other areas, marine vessels emit organic vapors directly to the atmosphere.

Equation 4 has been developed from test data to calculate the ballasting emissions from crude oil ships and ocean barges⁸:

$$L_{\rm B} = 0.31 + 0.20 \, \text{P} + 0.01 \, \text{PU}_{\rm A} \tag{4}$$

where:

 L_B = ballasting emission factor, lb/10³ gal of ballast water P = true vapor pressure of discharged crude oil, psia

 U_A = arrival cargo true ullage, before dockside discharge, measured from the deck, feet; (the term "ullage" here refers to the distance between the cargo surface level and the deck

Table 5.2-4 lists average total organic emission factors for ballasting into uncleaned crude oil cargo compartments. The first category applies to "full" compartments wherein the crude oil true ullage just before cargo discharge is less than 1.5 meters (m) (5 ft). The second category applies to lightered, or short-loaded, compartments (part of cargo previously discharged, or original load a partial fill), with an arrival true ullage greater than 1.5 m (5 ft). It should be remembered that these tabulated emission factors are examples only, based on average conditions, to be used when crude oil vapor pressure is unknown. Equation 4 should be used when information about crude oil vapor pressure and cargo compartment condition is available. The following sample calculation illustrates the use of Equation 4.

5.2-4 (Metric And English Units). TOTAL ORGANIC EMISSION FACTORS FOR CRUDE OIL BALLASTING^a

		Average Emi	ssion Factors	
	By Ca	itegory	Typica	l Overall ^b
Compartment Condition Before Cargo Discharge	mg/L Ballast lb/10³ gal Water Ballast Water		mg/L Ballast Water	lb/10³ gal Ballast Water
Fully loaded ^c	111	0.9		
Lightered or previously short loaded ^d	171	1.4 A	129	1.1

Assumes crude oil temperature of 16°C (60°F) and RVP of 34 kPa (5 psia). VOC emission factors average about 85% of these total organic factors, because VOCs do not include methane or ethane.

Based on observation that 70% of tested compartments had been fully loaded before ballasting. May not represent average vessel practices.

^c Assumed typical arrival ullage of 0.6 m (2 ft).

^d Assumed typical arrival ullage of 6.1 m (20 ft).

ATR REQUIRED TO STROKE VALVE

Size Tvi Diaph. 15 (psig) 20 (psig) 30 (psig) Area .9 0.625 E 0.052 0.063 0.092 Area .9 0.750 F 0.079 0.096 0.119 35 .9 1.000 M 0.050 0.060 0.080 35 .9 1.250 M 0.091 0.111 0.126 0.126 .0 12 1.000 F 0.116 0.150 0.218 .0 1.2 1.000 F 0.151 0.184 0.254 70 .0 1.500 M 0.150 0.178 0.234 70 .0 1.500 M 0.245 0.178 0.234 70 .0 1.500 M 0.245 0.189 0.257 0.311 .0 1.250 M 0.255 0.189 0.257 0.361 85 .14 1.500 M 0.255		1		<u> </u>			
9 0.750 F 0.079 0.096 0.119 9 1.000 M 0.050 0.060 0.080 9 1.250 M 0.091 0.111 0.126 12 0.625 F 0.116 0.150 0.218 12 1.000 F 0.151 0.184 0.254 12 1.250 M 0.128 0.153 0.202 12 1.500 M 0.150 0.178 0.234 12 2.000 M 0.201 0.245 0.311 14 0.625 M 0.201 0.245 0.311 14 1.250 M 0.251 0.270 0.361 14 1.500 M 0.253 0.303 0.404 14 1.500 M 0.253 0.303 0.404 18 1.250 M 0.564 0.620 0.849 18 1.500 M 0.556 0.680 0.927 18 2.000 M 0.696 0.844 1.317 18 2.750 M 0.838 1.009 1.350 180	Slze	TvI	Dlaph.	15 (ps(g)	O .	- · ·	Nominal Effective
12	- 9 9 9	0.625 0.750 1.000	F M M	0.052 0.079 0.050	0.063 0.096 0.060	0.092 0.119 0.080	
14 0.625 · M' 0.155 0.189 0.257 14 1.250 M 0.261 O.270 0.361 14 1.500 M 0.253 O.303 O.404 14 2.000 M 0.313 O.374 O.495 18 1.250 M 0.504 O.620 O.849 18 1.500 M 0.556 O.680 O.927 18 2.000 M 0.696 O.844 I.317 18 2.750 M 0.838 I.009 I.350 IBO	12	1.000 1.250 1.500	F M M	0.151 0.128 0.150	0.150 0.184 0.153 0.178	0.218 0.254 0.202 0.234	70
18 1.500 M 0.556 0.680 0.927 18 2.000 M 0.696 0.844 1.317 18 2.750 M 0.838 1.009 1.350 18 1.009 1.350	14 14 14	0.625 1.250 1.500 -2.000	M M	0.155 0.264 0.253 0.313	0.189 0.270 0.303	0.257 0.361 0.404	* 85
18 3.000 M 0.922 1.110 1.473 18 4.000 M 1.057 1.266 1.681	18 18 18	1,500 2,000 2,750 3,000	M M M M	0.556 0.696 0.838 0.922	0,680 0,844 1,009 1,110	0,927 1,317 1,350 1,473	180

F = Flat

bebloM = M

* SCF * Standard Cubic Feet

Solutions through engineered products.

ORRISEAL

A PROVER RESOURCES COMPANY

102B BURGESS DRIVE BROUSSARD, LA 70518 NORRISEAL CONTROLS
NORRIS VALVES

PHONE

318-837-3223

FAX

318-837-3448

United States Environmental Protection Agency Office of Air Quality Planning and Standards Research Triangle Park NC 27711

EPA-453/R-95-017 November 1995

Air

Protocol for Equipment Leak Emission Estimates

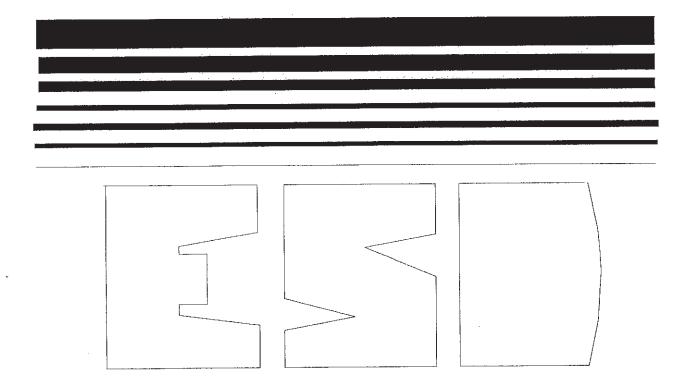


TABLE 2-4. OIL AND GAS PRODUCTION OPERATIONS AVERAGE EMISSION FACTORS (kg/hr/source)

		Emission Factor
Equipment Type	Servicea	(kg/hr/source)b
Valves .	Gas Heavy Oil Light Oil Water/Oil	4.5E-03 8.4E-06 2.5E-03 9.8E-05
Pump seals	Gas Heavy Oil Light Oil Water/Oil	2.4E-03 NA 1.3E-02 2.4E-05
Others ^C	Gas Heavy Oil Light Oil Water/Oil	8.8E-03 3.2E-05 7.5E-03 1.4E-02
Connectors	Gas Heavy Oil Light Oil Water/Oil	2.0E-04 7.5E-06 2.1E-04 1.1E-04
Flanges	Gas Heavy Oil Light Oil Water/Oil	3.9E-04 3.9E-07 1.1E-04 2.9E-06
Open-ended lines	Gas Heavy Oil Light Oil Water/Oil	2.0E-03 1.4E-04 1.4E-03 2.5E-04

aWater/Oil emission factors apply to water streams in oil service with a water content greater than 50%, from the point of origin to the point where the water content reaches 99%. For water streams with a water content greater than 99%, the emission rate is considered negligible.

bThese factors are for total organic compound emission rates (including non-VOC's such as methane and ethane) and apply to light crude, heavy crude, gas plant, gas production, and off shore facilities. "NA" indicates that not enough data were available to develop the indicated emission factor.

CThe "other" equipment type was derived from compressors, diaphrams, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents. This "other" equipment type should be applied for any equipment type other than connectors, flanges, open-ended lines, pumps, or valves.

EPA Average Emission Factors

The EPA emission factors used by GRI-HAPCalc 3.01 to estimate fugitive emissions were developed from data obtained during a joint American Petroleum Institute (API)/GRI fugitive testing program at natural gas production and processing sites [U.S. Environmental Protection Agency, 1995; American Petroleum Institute, 1995]. Over 184,000 components at 20 sites were screened for total hydrocarbon (THC) emissions, and the results were averaged for each component type to develop THC emission factors. Furthermore, a statistical analysis conducted by the EPA found no difference in THC fugitive emissions by industry segment for oil and gas production operation. The average THC emission factors for equipment in gas and light liquid service are shown in Table 20.

Table 20. EPA Average Emission Factors for THC

	Emis	sion Factor, b T	
	Gas Service	Light Liquids Service	Heavy Liquids Service
Connections	3.9	4.1	0.1
Flanges	7.5	2.1	0.0075
Open-Ended Line	39	27	2.7
Pump Seals	46	250	NA
Valves	87	48	0.16
Other* -	170	140	0:62

^{*} The "Other" category includes compressors, diaphragms, drains, dump arms, hatches, instruments, meters, pressure relief valves, polished rods, relief valves, and vents.

To calculate speciated fugitive emissions for BTEX, methane, NMHC, and NMEHC, composition data obtained during a joint American Petroleum Institute (API)/GRI fugitive testing program are used with the THC emission factors above. The average compositions of fugitive leaks from production facilities and natural gas plants are shown in Table 21.

Table 21. Fractional Composition of Fugitive Emissions

	Fraction	onal Comp	sition, Ib/lb Th	íc.
	Gas Production/			
200	Compressor			Heavy Liquid
Compound	Station	Gas Plant	Service	Service
Benzene	0.00023	0.00123	0.00027	0.00935
Toluene	0.00039	0.00032	0.00075	0.00344
Ethylbenzene	0.000020	0.000010	0.000170	0.00051
Xylenes (m,p,o)	0.00010	0.000040	0.000360	0.00372
Methane "	0.920	0.564	0.613	0.942
NMHC	0.080	0.436	0.387	0.058
NMEHC	0.0350	0.253	0.292	0,030

The following equation shows how annual emission rates are calculated from the above emission factors. The user-entered component count of each type of fugitive emission source is multiplied by the emission factor (lb THC/component/year) and the fractional composition (lb compound *i* / lb THC). This is then converted to an annual emission rate. Note that all calculations in GRI-HAPCalc 3.01 are done in U.S. Standard units and converted to metric units when necessary.

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID 20-13-CST
Tank Description Company Name Paloma Natural Gas, LLC

Tank Orientation	Horizontal
Tank Diameter (D ft)	3.00
Vertical Height/Horizontal Length (H _s ft)	5.00
Roof Height (H _R ft)	
Max Liquid Height (H _{LX} ft)	3.00
Avg Liquid Height (H _L ft)	1.50
Breather Vent Pressure Setting (P BP psig)	
Breather Vent Vacuum Setting (P _{BV} psig)	
actual tank pressure (P psig)	0.0
Shell Paint Solar Absorptance (S $_{A}$)	0.90
Roof Paint Solar Absorptance (R_A)	0.9
breather vent pressure range (ΔP _B psi)	0.00
roof outage (H _{RO} ft)	

Red - Primer	Tank Shell Color/Shade
average	Tank Shell Paint Condition
Red - Primer	Tank Roof Color/Shade
average	Tank Roof Paint Condition
horizontal tank	Roof Type
no insulation	Tank Insulation
no	Tank Underground?
59.52	Annual Throughput (Q bbl/year)
9.45	Annual Turnovers, N
8,760	Annual Hours
35.34	tank max liquid volume (V _{LX} ft ³)
1.178	vapor space outage (H _{vO} ft)
17.67	vapor space volume (V _v ft ³)

(V) ()	-	7.07	
Antoine co	onstants (log ₁₀ , mmHg,	°C)	

Tank contents (if not selected from	Гable 7.1-2):				Antoine	constants (log ₁₀ , mr	nHg, °C)
component	mole%	MW	lb/mole	wt%	Α	В	С
Toluene	100.000	92.141	92.14100	100.00000	7.017	1377.600	222.640
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
	100.000		92.141	100.000		•	

Baton Rouge, LA	Major City for Meterological Data
100	Site Elevation (ft)
14.643	Atmospheric Pressure (P _A psia)
	Table 7.1-2 Liquid
	RVP*
	API gravity*
	°F basis for gv*
	bubble point psia
	API gravity at 60F
	API gravity at 100F
1	Working Loss Product Factor (K _P)
1.000	working loss turnover factor K _N

^{*}sales oil data determines RVP per API pub 4683

report 1 of 2

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature ($T_{AX}^{\circ}F$)	61.60	65.20	71.40	78.00	85.00	89.40	90.90	91.30	87.60	79.70	70.10	63.10	77.80
hourly average minimum ambient temperature ($T_{AN}^{\circ}F$)	42.20	44.50	50.50	56.90	65.50	71.40	73.90	73.20	68.60	58.10	48.20	42.80	58.00
daily total solar insolation factor (I btu/ft² day)	822	1075	1375	1736	1894	1914	1896	1813	1553	1291	983	784	1428
daily average ambient temperature ($T_{AA}^{\circ}F$)	51.90	54.85	60.95	67.45	75.25	80.40	82.40	82.25	78.10	68.90	59.15	52.95	67.90
liquid bulk temperature (T_B °F)	54.12	57.75	64.66	72.14	80.36	85.57	87.52	87.15	82.29	72.39	61.80	55.07	71.76
average vapor temperature (T_V °F)	57.89	62.68	70.97	80.10	89.05	94.35	96.21	95.46	89.42	78.31	66.31	58.66	78.30
daily ambient temperature range (ΔT_A °R)	19.40	20.70	20.90	21.10	19.50	18.00	17.00	18.10	19.00	21.60	21.90	20.30	19.80
daily vapor temperature range (ΔT_V °R)	28.38	33.84	39.38	46.02	47.74	47.05	46.03	45.30	41.25	38.36	33.02	28.32	39.56
daily average liquid surface temperature ($T_{LA}^{\circ}F$)	56.00	60.22	67.82	76.12	84.71	89.96	91.87	91.30	85.85	75.35	64.06	56.86	75.03
daily maximum liquid surface temperature ($T_{LX}^{\circ}F$)	63.10	68.68	77.66	87.62	96.64	101.72	103.37	102.63	96.17	84.94	72.31	63.95	84.92
daily minimum liquid surface temperature ($T_{LN}^{\circ}F$)	48.91	51.76	57.97	64.61	72.77	78.19	80.36	79.98	75.54	65.76	55.80	49.78	65.14
vapor pressure at daily avg liq surface temp T_{LA} (P_{VA} psia)	0.292	0.333	0.420	0.536	0.684	0.790	0.832	0.819	0.706	0.524	0.375	0.300	0.520
vapor pressure at daily max liq surface temp T_{LX} (P_{VX} psia)	0.364	0.431	0.560	0.741	0.944	1.078	1.125	1.103	0.933	0.688	0.480	0.374	0.688
vapor pressure at daily min liq surface temp T_{LN} (P_{VN} psia)	0.232	0.255	0.311	0.381	0.486	0.569	0.605	0.599	0.527	0.395	0.290	0.239	0.387
daily vapor pressure range (ΔP_{V})	0.1317	0.1761	0.2498	0.3596	0.4578	0.5089	0.5195	0.5048	0.4053	0.2933	0.1899	0.1346	0.3003
vapor space expansion factor (K_E)	0.0642	0.0774	0.0922	0.1114	0.1205	0.1223	0.1211	0.1187	0.1047	0.0925	0.0764	0.0642	0.0953
vapor molecular weight (M _V lb/lbmole)	92.14	92.14	92.14	92.14	92.14	92.14	92.14	92.14	92.14	92.14	92.14	92.14	92.14
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	28	26	28	27	28	27	28	28	27	28	27	28	334
monthly turnovers (N/month) with avg = total annual	0.80	0.73	0.80	0.78	0.80	0.78	0.80	0.80	0.78	0.80	0.78	0.80	9.45
vented vapor saturation factor (K _S)	0.9821	0.9796	0.9744	0.9676	0.9591	0.9530	0.9506	0.9514	0.9578	0.9683	0.9771	0.9816	0.9686
vent setting correction factor (KB)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _V lb/ft ³)	0.0048	0.0055	0.0068	0.0085	0.0107	0.0122	0.0128	0.0127	0.0110	0.0084	0.0061	0.0050	0.0083
standing storage losses (L_S lb/month & avg is lb/yr)	0.24	0.25	0.34	0.42	0.54	0.60	0.65	0.64	0.54	0.42	0.30	0.25	5.20
working losses (L _W lb/month & avg is lb/yr)	0.14	0.14	0.19	0.23	0.30	0.34	0.36	0.36	0.30	0.24	0.17	0.14	2.92
total losses (L_T lb/month & avg is lb/yr)	0.38	0.39	0.54	0.65	0.84	0.93	1.01	1.00	0.84	0.66	0.47	0.39	8.12
max hourly Q in bbl/hour	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	
max hourly working loss at P_{VX} & Q/hr & $K_{N}\text{=}1$ (L_{W} lb/hr)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
breathing/standing loss (L_S lb/hr)	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.000	
max hourly total loss (L_T lb/hr)	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.001	0.001	0.001	0.001	

 $\begin{array}{|c|c|c|c|c|} \textbf{L}_{S} \text{ sum months} & \textbf{L}_{T} \text{ sum months} \\ \hline & 5.20 & 2.92 & 8.12 \\ \hline \end{array}$

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions	Summary:	avg lbs/hr	max lbs/hr	lbs/yr
	Standing/Breathing Loss L _s	0.001	0.001	4.935
	Working Loss L _W	0.000	0.000	2.771
	Total Loss L _T	0.001	0.002	7.706

max hourly total loss may not add up to $L_{\rm S}$ + $L_{\rm W}$ as their max values may be in different months

Tank Emission Calculations Based on AP 42 Chapter 7 (June 2020, Section 7.1.3.1), Fixed Roof

Tank ID 21-13-LOT
Tank Description Company Name Paloma Natural Gas, LLC

Horizontal	Tank Orientation
3.00	Tank Diameter (D ft)
5.00	Vertical Height/Horizontal Length (H _S ft)
	Roof Height (H _R ft)
3.00	Max Liquid Height (H _{LX} ft)
1.50	Avg Liquid Height (H _L ft)
	Breather Vent Pressure Setting (P _{BP} psig)
	Breather Vent Vacuum Setting (P _{BV} psig)
0.0	actual tank pressure (P , psig)
0.90	Shell Paint Solar Absorptance (S _A)
0.9	Roof Paint Solar Absorptance (R _A)
0.00	breather vent pressure range (ΔP_B psi)
	roof outage (H _{RO} ft)

Tank Shell Color/Shade	Red - Primer
Tank Shell Paint Condition	average
Tank Roof Color/Shade	Red - Primer
Tank Roof Paint Condition	average
Roof Type	horizontal tank
Tank Insulation	no insulation
Tank Underground?	no
Annual Throughput (Q bbl/year)	13.10
Annual Turnovers, N	2.08
Annual Hours	8,760
tank max liquid volume (V_{LX} ft ³)	35.34
vapor space outage (H $_{ m VO}$ ft)	1.178
vapor space volume (V $_{V}$ ft 3)	17.67

Tank contents (if not selected from Table 7.1-2): Antoine constants (log 10, mmHg, °C)

component	mole%	MW	lb/mole	wt%	Α	В	С
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						
0	0.000						

0.000 0.000 0.000

Baton Rouge, LA	Major City for Meterological Data			
100	Site Elevation (ft)			
14.643	Atmospheric Pressure (P_A psia)			
No. 2 fuel oil (diesel)	Table 7.1-2 Liquid			
	RVP*			
	API gravity*			
:	°F basis for gv*			
1	bubble point psia			
:	API gravity at 60F			
;	API gravity at 100F			
1	Working Loss Product Factor (K P)			

Norking Loss Product Factor (K _P)	1
working loss turnover factor K_N	1.000

^{*}sales oil data determines RVP per API pub 4683

report 1 of 2

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg
hourly average maximum ambient temperature (T_{AX} °F)	61.60	65.20	71.40	78.00	85.00	89.40	90.90	91.30	87.60	79.70	70.10	63.10	77.80
hourly average minimum ambient temperature ($T_{AN}^{\circ}F$)	42.20	44.50	50.50	56.90	65.50	71.40	73.90	73.20	68.60	58.10	48.20	42.80	58.00
daily total solar insolation factor (I btu/ft² day)	822	1075	1375	1736	1894	1914	1896	1813	1553	1291	983	784	1428
daily average ambient temperature ($T_{AA}^{\circ}F$)	51.90	54.85	60.95	67.45	75.25	80.40	82.40	82.25	78.10	68.90	59.15	52.95	67.90
liquid bulk temperature (T_B °F)	54.12	57.75	64.66	72.14	80.36	85.57	87.52	87.15	82.29	72.39	61.80	55.07	71.76
average vapor temperature (T_V $^{\circ}F$)	57.89	62.68	70.97	80.10	89.05	94.35	96.21	95.46	89.42	78.31	66.31	58.66	78.30
daily ambient temperature range (ΔT_A °R)	19.40	20.70	20.90	21.10	19.50	18.00	17.00	18.10	19.00	21.60	21.90	20.30	19.80
daily vapor temperature range (ΔT_V °R)	28.38	33.84	39.38	46.02	47.74	47.05	46.03	45.30	41.25	38.36	33.02	28.32	39.56
daily average liquid surface temperature ($T_{LA}^{\circ}F$)	56.00	60.22	67.82	76.12	84.71	89.96	91.87	91.30	85.85	75.35	64.06	56.86	75.03
daily maximum liquid surface temperature ($T_{LX}^{\circ}F$)	63.10	68.68	77.66	87.62	96.64	101.72	103.37	102.63	96.17	84.94	72.31	63.95	84.92
daily minimum liquid surface temperature ($T_{LN}^{\circ}F$)	48.91	51.76	57.97	64.61	72.77	78.19	80.36	79.98	75.54	65.76	55.80	49.78	65.14
vapor pressure at daily avg liq surface temp T_{LA} (P_{VA} psia)	0.006	0.007	0.008	0.011	0.014	0.016	0.017	0.017	0.015	0.011	0.007	0.006	0.010
vapor pressure at daily max liq surface temp T_{LX} (P_{VX} psia)	0.007	0.009	0.011	0.015	0.020	0.023	0.024	0.024	0.020	0.014	0.010	0.007	0.014
vapor pressure at daily min liq surface temp T_{LN} (P_{VN} psia)	0.004	0.005	0.006	0.008	0.010	0.012	0.012	0.012	0.011	0.008	0.006	0.005	0.008
daily vapor pressure range (ΔP_{V})	0.0027	0.0037	0.0053	0.0079	0.0103	0.0116	0.0119	0.0115	0.0091	0.0064	0.0040	0.0028	0.0065
vapor space expansion factor (K_E)	0.0552	0.0653	0.0750	0.0864	0.0884	0.0864	0.0843	0.0830	0.0762	0.0721	0.0633	0.0550	0.0744
vapor molecular weight (M _V lb/lbmole)	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00	130.00
monthly hours with avg = total annual	744	672	744	720	744	720	744	744	720	744	720	744	8,760
throughputs (ft ³ /month) and avg = total annual	6	6	6	6	6	6	6	6	6	6	6	6	74
monthly turnovers (N/month) with avg = total annual	0.18	0.16	0.18	0.17	0.18	0.17	0.18	0.18	0.17	0.18	0.17	0.18	2.08
vented vapor saturation factor (K _S)	0.9996	0.9996	0.9995	0.9993	0.9991	0.9990	0.9989	0.9989	0.9991	0.9993	0.9995	0.9996	0.9993
vent setting correction factor (KB)	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
vapor density (W _V lb/ft ³)	0.0001	0.0002	0.0002	0.0002	0.0003	0.0004	0.0004	0.0004	0.0003	0.0002	0.0002	0.0001	0.0002
standing storage losses (L _S lb/month & avg is lb/yr)	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.12
working losses (L _W lb/month & avg is lb/yr)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
total losses (L_T lb/month & avg is lb/yr)	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.01	0.01	0.01	0.01	0.14
max hourly Q in bbl/hour	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
max hourly working loss at $\rm P_{\rm VX}$ & Q/hr & $\rm K_N=1$ ($\rm L_W$ lb/hr)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
breathing/standing loss (L_S lb/hr)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
max hourly total loss (L_T lb/hr)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

$L_S sum months$	L_{W} sum months	L _T sum months
0.12	0.02	0.14

The monthly sums will be greater than the annual average since the monthly variables yield higher emissions

Emissions Summary:		avg lbs/hr	max lbs/hr	lbs/yr	
	Standing/Breathing Loss L _s	0.000	0.000	0.113	
	Working Loss L _W	0.000	0.000	0.017	max hourl different r
	Total Loss L _T	0.000	0.000	0.131	unicienti

max hourly total loss may not add up to $\mathsf{L}_\mathsf{S} + \mathsf{L}_\mathsf{W}$ as their max values may be in different months

