

VENTURE OIL & GAS, INC.

OIL AND GAS EXPLORATION, DEVELOPMENT & OPERATIONS

140 MAYFAIR ROAD, SUITE 900 HATTIESBURG, MS 39402 PHONE: 601-428-7725 Fax: 601-450-4448

October 16, 2023

Ms. Krystal Rudolph, P.E. Chief Environmental Permits Division Mississippi Department of Environmental Quality PO Box 2261 Jackson, MS 39225-2261

Dear Ms. Rudolph:

Re: Venture Oil & Gas Inc. Stringer 8-11 No. 1 Tank Battery MSOPGP 2500-00094, AI # 73258 Oil Production General Permit Modification NOI

Venture Oil & Gas Inc. is submitting the enclosed NOI for modification of coverage under the Oil Production General Permit for the Stringer 8-11 No. 1 facility in Smith County, MS. The modification is for the operation of a glycol dehydration unit to remove water from the sales gas. Also enclosed is a copy of the public notice which is to be published October 18, 2023.

If you have any questions, please feel free to contact me at (601) 428-2257.

Sincerely,

an 1.

Dan Watts HSE Director

Oil Production General Permit Public Notice Mississippi Environmental Quality Permit Board P. O. Box 2261 Jackson, Mississippi 39225 Telephone No. (601) 961-5171

Public Notice Start Date: 10/18/2023

Venture Oil & Gas Stringer 8-11 No. 1 facility located at Lat. 31.84957, Long -89.32691, Smith county, MS, approximately 4.4 miles west-south west of Stringer, MS, off of Smith County Road 7, in Section 8, T10N, R13W, (601) 518-0622, has applied to the Mississippi Department of Environmental Quality (MDEQ) for modification of coverage MSOPG 2500-00094 under MDEQ's Oil Production General Permit to construct and operate an oil production facility.

The Oil Production General Permit has been developed to ensure compliance with all State and Federal regulations. Facilities granted coverage under this permit and adhering to the conditions contained therein should operate within State and Federal environmental laws and standards concerning the operation of air emissions equipment.

The proposed project consists of construction and operation of a glycol dehydration unit to remove water from the field sales gas. The facility will operate control(s) such that criteria pollutant emissions will not exceed emission rates restricted in the Oil Production General Permit, nor will hazardous air pollutant (HAP) emissions exceed any HAP emission rates restricted in the Oil Production General Permit. This project will result in new sources of potential emissions of regulated air pollutants. However, emissions will be below the Prevention of Significant Deterioration significance levels as specified in the Mississippi Regulations for the Prevention of Significant Deterioration of Air Quality, 11 Miss. Admin. Code Pt. 2, Ch. 5., and in 40 CFR Part 52.21. Potential emissions will also be below the Air Title V Major Source thresholds as specified in 11 Miss. Admin. Code Pt. 2, Ch. 6. and in 40 CFR Part 70.

Persons wishing to comment upon or object to the proposed request are invited to submit comments in writing to the **Air 1 Branch Chief**, **Environmental Permits Division** at the Permit Board's address shown above no later than 30-days from the date of publication of this notice. All comments received or postmarked by this date will be considered in the determination regarding the coverage approval. After receipt of public comments and thorough consideration of all comments, MDEQ will formulate its recommendations regarding coverage approval.

Additional details about the proposed project are available by writing or calling the **Air 1 Branch Chief, Environmental Permits Division** at the above Permit Board address and telephone number and on the MDEQ's website at: <u>https://www.mdeq.ms.gov/ensearch/recently-received-general-permit-noi/</u>. This information is also available for review at the following locations during normal business hours:

Mississippi Department of Environmental Quality Office of Pollution Control 515 East Amite Street, Jackson, MS 39201 (601) 961-5171 Floyd J. Robinson Memorial Library

> 150 Main Street Raleigh, MS 39153

Please bring the foregoing to the attention of persons whom you know will be interested.

MODIFICATION OIL PRODUCTION GENERAL PERMIT NOTICE OF INTENT

VENTURE OIL & GAS, INC Stringer 8-11 No. 1 Facility Smith County, Mississippi

Submittal Date: October, 2023

PREPARED BY:

FC&E ENGINEERING, LLC 917 MARQUETTE ROAD BRANDON, MISSISSIPPI 39042 (601) 824-1860

ORIGINAL

ECEIVE

OCT 1 9 2023

MDEQ

MDEQ NOTICE OF INTENT FO PRODUCTION GENERAL PERMI'	R COVERAGE UI T TO CONSTRUC	NDER THE OIL CT/OPERATE AIR	
Evility (Agoney Interest) Information		Section OPCP - A	
1. Name, Address, and Location of Facility		Section Of Of - A	
A. Owner/Company Name: Venture Oi	l & Gas Inc.		
B. Facility Name (<i>if different than A. above</i>):	Venture Stringer 8-11 N	o. 1 Facility	
C. Facility Air Permit/Coverage No. (if known) :	2500-00094		
D. Agency Interest No. (if known):	732	258	R
E. Physical Address 1. Street Address: Field Road off of Coun	nty Road 7		RIGI
2. City: Taylorsville	3. State:	MS	Z
4. County: Smith	5. Zip Code:	39168	D
6. Telephone No.: $601-518-0622$	7. Fax No.:	1	
8. Are facility records kept at this location?	Yes V No. P	lease complete Item 10.	
F. Mailing Address	124		
1. Street Address of P.O. Box: 207 South	2 State:	MS	
4. Zin Code: 39440	5. State.		
G. Latitude/Longitude Data 1. Collection Point (<i>check one</i>): Site Entrance	Other: Well head	D) 臣 C 臣 I V D) OCT 1 9 20	
 2. Method of Collection (<i>check one</i>): □ GPS Specify coordinate syst ☑ Map Interpolation (Google Earth, etc.) 	tem (NAD 83, etc.) etc.)	Other:	
3. Latitude (<i>degrees/minutes/seconds</i>):	31/50/58.4514		
4. Longitude (<i>degrees/minutes/seconds</i>):	neg89/19/36.8754		
5. Elevation (<i>feet</i>): 425 H. SIC Code: 1311			
2. Name and Address of Facility Contact			
A. Name: Dan Watts	Title:	EHS Director	
B. Mailing Address			
1. Street Address or P.O. Box: 140 Mavfai	r road, Suite 900		
2. City: hattiesburg	3. State:	MS	
4. Zip Code: 39402	5. Fax No.:	601-450-4448	
6. Telephone No.: 601-319-4158	Landon on presentational and the second		
7. Email: dwatts@venture-inc.com			
			1

TRM

MDEQ	NOTICE OF INTENT FOR	COVERAGE U	NDER THE OIL
PRODUC	TION GENERAL PERMIT	TO CONSTRUC	CT/OPERATE AIR
EMISS	SIONS EQUIPMENT AT A	SYNTHETIC M	INOR SOURCE
Facility (Agen	cy Interest) Information		Section OPGP - A
3. Name and A	Address of Air Contact (if differen	nt from Facility Con	tact)
A. Name:		Title:	
B. Mailing	Address		
1. Street Ad	dress or P.O. Box:		
2. City:		3. State:	
4. Zip Code	•	5. Fax No.:	
6. Telephon	e No.:		
7. Email:	· <u> </u>		
4. Name and	Address of Responsible Official for	or the Facility	
The Form must	t be signed by a Responsible Official as	defined in 11 Miss. Adn	nin. Code Pt.2, R. 2.1.C(24).
		•	
A. Name:	Adam Barham	Title:	VP-operations
ł			· · · · · · · · · · · · · · · · · · ·
B. Mailing	Address		
1. Street Ad	dress or P.O. Box: 140 Mayfair	road, Suite 900	
2. City:	Hattiesburg	3. State:	MS
4. Zip Code	: 39402	5. Fax No.:	601-450-4448
6. Telephon	e No.: 601-518-0622		
7. Email:	abarham@venture-inc.com		
	<u>_</u>		
C. Is the per	son above a duly authorized represent Yes No	ative and not a corporative	ate officer?
If yes, has w	vritten notification of such authorization	on been submitted to M	IDEQ?
	Yes 🗌 No	Request for	authorization is attached
5. Type of Oil	Production Notice of Intent (Che	eck all that apply)	
	Initial Coverage	Re-Coverag	e for existing Coverage
	Modification with Public Notice	□ Modification	n without Public Notice
	Update Compliance Plan		

Facility (Agency Interest) Information

Section OPGP - A

6. Equipment List (Check all that apply)

Complete supporting emission calculations must be included for each potential emission unit selected below.

☑ Heater Treater. Include a completed <u>Section OPGP-C Form</u> for each unit.

☑ Condensation Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.

Water Storage Vessel. Include a completed <u>Section OPGP-E Form</u> for each unit.

- ☑ Internal Combustion Engine. Include a completed <u>Section OPGP-D Form</u> for each unit.
- ☑ Flare. Include a completed <u>Section OPGP-F Form</u> for each unit.
- ☑ Oil Truck Loading (Section OPGP-B Form)
- Component Fugitive Emissions (Section OPGP-B Form)

Other:

7. Process/Product Details

Maximum Anticipated W	(ell(s) Production for Facility:
-----------------------	----------------------------------

Produced Material	Throughput	Units
Gas	6	MMCF/day
Oil	350	barrels/day
Water	10	barrels/day
Other (Specify)		

Maximum Anticipated Throughput for Principal Product(s) (as applicable):

Produced Material	Throughput	Units
Flared Gas	6	MMCF/day
Oil	350	barrels/day
Water	10	barrels/day
Other (Specify)		

8. Zoning

- A. Is the facility (either existing or proposed) located in accordance with any applicable city and/or county zoning ordinances? If no, please explain Yes
- B. Is the facility (either existing or proposed) required to obtain any zoning variance to locate/expand the facility at this site? If yes, please explain.
 No

C. Is the required USGS quadrangle map or equivalent attached?

☑ Yes □ No

PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AI	R
EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE	

Facility (Agency Interest) Information

Section OPGP - A

9. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

10. Address and Location of Facility Records

Physical	Address
1. Street	Address:

140 mayfair Road, Suite 900

601-518-0622

2. City: Hattiesburg

4. County: Forrest

6. Telephone No.:

3	State:	MS
э.	State.	1410

5. Zip Code: <u>39402</u> 7. Fax No.: <u>601-450-4448</u>

MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE Facility (Agency Interest) Information

11. Certification

Section OPGP - A

The Form must be signed by a Responsible Official as defined in 11 Miss. Admin. Code Pt. 2, R. 2.1.C.(24).

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature of Responsible Official/DAR

Adam Barham

Printed Name

Date

10/17/2023

Section B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section B.3 and GHGs in Section B.4. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

Emission	TSP	(PM)	PM	-10 ¹	PM	-2.5 ¹	S	02	N	Dx	С	0	V	DC	TI	₹S ²	Le	ad	Total	HAPs
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	61.18	267.96	0.00	0.00	0.00	0.00	5.5871	24.4714
AA-001a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0001	0.0004
AA-002	0.01	0.05	0.02	0.10	0.02	0.10	0.00	0.00	2.70	11.83	4.55	19.91	0.04	0.19	0.00	0.00	0.00	0.00	0.0480	0.2103
AA-002a	0.01	0.06	0.03	0.13	0.03	0.13	0.00	0.00	3.27	14.34	5.51	24.13	0.04	0.19	0.00	0.00	0.00	0.00	0.0480	0.2103
AA-003	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.28	0.00	0.00	0.00	0.00	0.0036	0.0159
AA-004	Routed to	AA-001																		
AA-005	Routed to	AA-001																		
AA-006	Routed to	AA-001																		
AA-006a	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.05	0.21	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00	0.0009	0.0041
AA-007	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.0043	0.0190
AA-008	Routed to	AA-001																		
AA-009	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	117.72	16.76	0.00	0.00	0.00	0.00	5.2676	0.7498
AA-010	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.01	0.11	0.01	0.09	0.00	0.01	0.00	0.00	0.00	0.00	0.0005	0.0020
AA-011	0.00	0.00	0.00	0.008	0.00	0.008	0.00	0.00	0.02	0.11	0.02	0.09	0.00	0.01	0.00	0	0.00	0	0.00	0.00
AA-011a	-	-	l	I	Ì	-	1	-		-	1	1	-	4.24	-	-	1	-	0.32	1.41
AA-011b	-	1	1	1	-	1	_	-	1	_	Ι	1	-	4.15	-	+	1	-	0.00	0.00
		_																		
Totals	0.03	0.12	0.06	0.26	0.06	0.26	0.00	0.01	6.06	26.61	10.13	44.40	179.06	293.81	0.00	0.00	0.00	0.00	11.28	27.10

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.2: Proposed Allowable Emissions

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

Emission	TS	P ¹	PM	[10 ¹	PM	2.5 ¹	S	0 ₂	N	Ox	C	0	V	DC	T	RS	Le	ad
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	ib/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.00	0.02	0.02	0.07	0.02	0.07	0.000	0.00	0.15	0.68	0.70	3.09	1.22	5.36	0.00	0.00	0.00	0.00
AA-001a	0.00	0.00	0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
AA-002	0.01	0.05	0.02	0.104	0.02	0.104	0.001	0.004	2.70	11.83	4.55	19.91	0.04	0.19	0.00	0.00	0.00	0.00
AA-002a	0.01	0.05	0.02	0.094	0.02	0.094	0.001	0.003	2.45	10.75	4.13	18.10	0.03	0.14	0.00	0.00	0.00	0.00
AA-003	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.28	0.00	0.00	0.00	0.00
AA-004	Routed to	AA-001																
AA-005	Routed to	AA-001																
AA-006	Routed to	AA-001																
AA-006a	0.00	0.00	0.00	0.02	0.00	0.02	0.00	0.00	0.05	0.21	0.04	0.18	0.00	0.01	0.00	0.00	0.00	0.00
AA-007	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00
AA-008	Routed to	AA-001																
AA-009	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	117.72	16.76	0.00	0.00	0.00	0.00
AA-010	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.02	0.11	0.02	0.09	0.00	0.01	0.00	0.00	0.00	0.00
AA-011	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.02	0.11	0.02	0.09	0.00	0.01	0.00	0.00	0.00	0.00
AA-011a		_	_	_	_	-	_	-	-	_	-	-	_	4.24	-	-	_	_
AA-011b	- 1	_	_	_		_					_	-		4.15	-	_		
Totals	0.03	0.12	0.07	0.30	0.07	0.30	0.00	0.01	5.41	23.71	9.47	41.47	119.09	31.17	0.00	0.00	0.00	0.00

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission	ion Total HAPs		Ps 1,1,2,2 - tetrachloroethar		1,1,2-trich	loroethane	1 ,3-b u	tadiene	1,3-dichlo	ropropene	acetalo	dehyde	acro	olein	benzene		carbon tetrachloride	
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.1304	0.4894	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	0.0121	0.0531	< 0.0001	< 0.0001
AA-001a	0.0001	0.0004	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001
AA-002	0.0396	0.1735	< 0.0001	0.0001	<0.0001	0.0001	0.0008	0.0035	<0.0001	0.0001	0.0034	0.0149	0.0032	0.0141	0.0019	0.0085	<0.0001	0.0001
AA-002a	0.0480	0.2103	<0.0001	0.0002	<0.0001	0.0001	0.0010	0.0043	<0.0001	0.0001	0.0041	0.0181	0.0039	0.0171	0.0023	0.0102	<0.0001	0.0001
AA-003	0.0036	0.0159	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0003	0.0012	<0.0001	< 0.0001
AA-004	Routed to	AA-001																
AA-005	Routed to	AA-001													_			
AA-006	Routed to	AA-001																
AA-006a	0.0009	0.0041	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
AA-007	0.0043	0.0190	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
AA-008	Routed to	AA-001																
AA-009	5.2676	0.7498	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	0.5648	0.0804	< 0.0001	<0.0001
AA-010	0.00047	0.00205	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001
AA-011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AA-011a	0.32091	1.4056	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.2932	1.2842	<0.01	<0.01
AA-011b	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
							<u>.</u>											
	·····																	
Totals:	5.8160	3.0701	0.0000	0.0003	0.0000	0.0002	0.0018	0.0078	0.0000	0.0002	0.0075	0.0330	0.0071	0.0311	0.8747	1.4376	0.0000	0.0002

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission	on Total HAPs		chlorot	enzene	chlor	oform	ethylbo	enzene	ethylene o	dibromide	formal	dehyde	meth	anol	methylene chloride		naphthalene	
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/br	ton/yr	lb/hr	ton/yr
AA-001	0.1414	0.4894	<0.0001	<0.0001	<0.0001	<0.0001	0.0006	0.0028	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001
AA-001a	0.0001	0.0004	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AA-002	0.0396	0.1735	< 0.0001	0.0001	< 0.0001	0.0001	< 0.0001	0.0001	<0.0001	0.0001	0.0250	0.1097	0.0037	0.0164	0.0001	0.0002	0.0001	0.0005
AA-002a	0.0227	0.2103	<0.0001	<0.0001	<0.0001	.<0.0001	<0.0001	0.0002	<0.0001	0.0001	0.0304	0.1330	0.0045	0.0198	<0.0001	0.0003	0.0001	0.0006
AA-003	0.0036	0.0159	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001
AA-004	Routed to	AA-001															<0.0001	<0.0001
AA-005	Routed to	AA-001															< 0.0001	<0.0001
AA-006	Routed to	AA-001															<0.0001	<0.0001
AA-006a	0.0009	0.0041	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	0.0002	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001
AA-007	0.0043	0.0190	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
AA-008	Routed to	AA-001															<0.0001	<0.0001
AA-009	5.2676	0.7498	<0.0001	< 0.0001	<0.0001	< 0.0001	0.0216	0.0031	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001
AA-010	0.0005	0.0020	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
AA-011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AA-011a	0.32091	1.4056	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
AA-011b	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
														1				
Totals:	5.8017	3.0701	0.0000	0.0001	0.0000	0.0001	0.0222	0.0062	0.0000	0.0003	0.0554	0.2429	0.0083	0.0362	0.0001	0.0005	0.0003	0.0011

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

Emission	Total	HAPs	PA	νн	sty	rene	tolu	ene	vinyl c	hloride	xyl	cne	n-he	xane	PC	м		
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-001	0.1414	0.4894	< 0.0001	< 0.0001	< 0.0001	<0.0001	0.0142	0.0621	< 0.0001	< 0.0001	0.0089	0.0388	0.0759	0.3326	< 0.0001	< 0.0001		
AA-001a	0.0001	0.0004	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	0.0001	0.0004	<0.0001	< 0.0001		
AA-002	0.0396	0.1735	0.0002	0.0008	<0.0001	0.0001	0.0007	0.0030	<0.0001	<0.0001	0.0002	0.0010	<0.0001	<0.0001	<0.0001	< 0.0001		
AA-002a	0.0227	0.2103	0.0002	0.0009	< 0.0001	<0.0001	0.0008	0.0036	<0.0001	< 0.0001	0.0003	0.0013	< 0.0001	< 0.0001	<0.0001	<0.0001		
AA-003	0.0036	0.0159	<0.0001	< 0.0001	<0.0001	<0.0001	0.0002	0.0009	<0.0001	<0.0001	0.0001	0.0005	0.0030	0.0133	<0.0001	<0.0001		
AA-004	Routed to	AA-001																
AA-005	Routed to	AA-001																
AA-006	Routed to	AA-001																
AA-006a	0.0009	0.0041	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.0009	0.0039	<0.0001	0.0001		
AA-007	0.0043	0.0190	<0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001		
AA-008	Routed to	AA-001																
AA-009	<0.0001	0.7498	<0.0001	< 0.0001	<0.0001	<0.0001	0.5593	0.0796	<0.0001	< 0.0001	0.2946	0.0419	3.8273	0.5448	<0.0001	<0.0001		
AA-010	0.00047	0.00205	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00044	0.00193	<0.0001	<0.0001		
AA-011	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
AA-011a	0.32091	1.4056	<0.01	<0.01	<0.01	<0.01	0.0233	0.1021	<0.01	<0.01	0.0042	0.0184	<0.01	<0.01	<0.01	<0.01		
AA-011b	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
Totals:	0.5341	3.0701	0.0004	0.0017	0.0000	0.0001	0.5985	0.2514	0.0000	0.0000	0.3083	0.1019	3.9077	0.8969	0.0000	0.0001		

Section B.4: Greenhouse Gas Emissions

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

		CO2 (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N2O ton/yr	CH₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr				Total GHG Mass Basis ton/yr ⁵	Total CO2e ton/yr ⁶
Emission Point ID	GWPs 1	1	1	298	25	22,800	footnote 4					
A A_001	mass GHG	1595.34	0	0.00	0.39	0	0				1595.73	N/A
7676-001	CO2e	1595.34	0	0.33	9.84	0	0				N/A	1605.51
AA-0019	mass GHG	25.59	0	0.00	0.00	0	0				25.59	N/A
7K/1-0014	CO2e	25.59	0	0.01	0.01	0	0			·	N/A	25.62
44-002	mass GHG	624.23	0	0.00	0.01	0	0				624.24	N/A
	CO2e	624.23	0	0.35	0.29	0	0	 			N/A	624.88
AA-0029	mass GHG	756.64	0	0.00	0.01	0	0				756.66	N/A
	CO2e	756.64	0	0.43	0.36	0	0				N/A	757.43
A A-003	mass GHG	0.03	0	0.00	0.33	0	0				0.35	N/A
AA-005	CO2e	0.03	0	0.00	8.18	0	0				N/A	8.21
A A-004	mass GHG	0	0	0	0	0	0		·		0.00	N/A
7474-004	CO2e	0	0	0	0	0	0				N/A	0.00
AA-005	mass GHG	0	0	0	0	0	0				0.00	N/A
	CO2e	0	0	0	0	0	0				N/A	0.00
A A_006	mass GHG	0	0	0	0	0	0				0.00	N/A
AA-000	CO ₂ e	0	0	0	0	0	0				N/A	0.00
A A -0060	mass GHG	255.45	0	0.00	0.00	0	0				255.46	N/A
AA-000a	CO ₂ e	255.45	0	0.14	0.12	0	0				N/A	255.71
A A 007	mass GHG	0	0	0	0	0	0				0.00	N/A
AA-007	CO ₂ e	0	0	0	0	0	0				N/A	0.00
4.4.009	mass GHG	0	0	0	0	0	0				0.00	N/A
AA-000	COze	0	0	0	0	0	0				N/A	0.00
4 4 000	mass GHG	0.03	0.00	0.00	0.18	0.00	0.00				0.21	N/A
AA-009	CO ₂ e	0.03	0.00	0.00	4.50	0.00	0.00				N/A	4.53
	mass GHG	128	0	0.00	4	0.00	0.00				131.30	N/A
AA-UII	CO ₂ e	128	0	0.07	89.33	0.00	0.00				N/A	217.12
	mass GHG	127.73	0.00	0.00	0.00	0.00	0.00				127.73	N/A
AA-010	CO ₂ e	127.73	0.00	0.07	0.06	0.00	0.00				N/A	127.86
FACILITY	mass GHG	3512.76	0	0.00	4.51	0.00	0.00				3517.28	N/A
TOTAL	CO ₂ e	3512.76	0	1.40	112.69	0.00	0.00				N/A	3626.86

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or micro-organisms.

³ For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a mass basis is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO₂ in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO₂e in this total.

Emission	Orientation (H- Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume	Geograph (degrees/min	ic Position utes/seconds)
Point ID	V=Vertical)	(Yes or No)	(ft)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
AA-001	Н	No	40	415	1800	0.50	100	TBD	31/50/58.4514	89/19/36.8754
AA-002	Н	Yes	7	415	TBD	TBD	TBD	TBD	31/50/58.4514	89/19/36.8754
AA-002a	Н	yes	7	415	TBD	TBD	TBD	TBD	31/50/58.4514	89/19/36.8754
AA-003	N/A-Fugitives	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-004	N/A-Separator	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-005	N/A-Separator	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-006	N/A-Heater Treater	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-006a	TBD	TBD	TBD	415	TBD	TBD	TBD	TBD	31/50/58.4514	89/19/36.8754
AA-007	N/A-Tanks	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-008	N/A-Tanks	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-009	N/A-Truck Loading	N/A	N/A	415	N/A	N/A	N/A	N/A	31/50/58.4514	89/19/36.8754
AA-010	TBD	TBD	TBD	415	N/A	TBD	TBD	TBD	31/50/58.4514	89/19/36.8754
AA-011	v	yes	10	415	700	0.15	TBD	TBD	31/50/58.4514	89/19/36.8754
AA-011a	v	yes	15	415	120	0.25	TBD	TBD	31/50/58.4514	89/19/36.8754
AA-011b	V V	ves	15	415	200	0.5	TBD	TBD	31/50/58.4514	89/19/36.8754

Section B.5: Stack Parameters and Exit Conditions

¹A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

'u	el Bu	irning Eq	uipment – I	External Co	mbustio	n	Sec	tion OPGP-(
01	Irces Em	s Secon Poir	t Description							
•	1710		tt Deserrption	· _ · · · · · · · · · · · · · · · · · ·		<u></u>				
	Α.	Emission Poir	t Designation (Ref.	No.):	AA-011					
	B.	Equipment De	escription:	TEG dehydrator						
	C.	C. Manufacturer: custom D. Date of Manufacture and No.: 2015								
	E. Maximum Heat Input (higher heating value): 0.175 MMBtu/hr F. Nominal Heat Input Capacity: 0.175 MMBtu/hr									
	G. Use: Line Heater Heater TEG Burner									
		Space H	leat 🗌 Pro	ocess Heat	Othe (des	er cribe):				
	H.	H. Heat Mechanism: Direct Indirect								
	I.	Burner Type (e.g., forced draft, natural draft, etc.): Natural draft								
	J.	Additional De	sign Controls (e.g.,	FGR, etc.):						
	K.	Status:	Operating	🗌 Ргорс	osed] Under (Construct	ion		
						<u></u>		·····		
	<u>Fue</u>	el Type	ing table identifiin	a aaah tuma af fiyal	and the amoun	tucad Sma	if. the l	mite for best content		
	hour	ly usage, and ye	arly usage.	g each type of fuer		t useu. Spec	iny ule t			
	F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIM HOUR USAC	IUM LY Æ	MAXIMUM YEARLY USAGE		
		Nat gas	1000 btu/scf	neg	neg	175 s	cf	63875 scf		
	Please list any fuel components that are hazardous air pollutants and the percentage in the fuel:									

Compliance Plan

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

Section OPGP-G

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE				
Example: Engines	40 CFR 63, Subpart ZZZZ	10/01/2002	11/15/2019	N/A				
Example: Fugitive Emissions	40 CFR 60, Subpart OOOOa	10/01/2019	11/15/2019	N/A				
Example: Flare	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	12/01/2019	12/02/2019	N/A				
This list of examples is not intended to be conclusive for each type of emission source. This list only provides examples of how the table should be completed.								
AA-001 Flare and facility wide	11 Miss. Admin. Code Pt. 2, R.1.4.B(2).	11/01/2023 (est.)	05/01/2020 (est.)	N/A				
AA-002, 002a Engines	40 CFR 63, Subpart ZZZZ	11/01/2023 (est.)	5/01/2020 (est.)	N/A				
AA-002, 002a, AA- 006a, AA-010	11 Miss. Admin. Code Pt. 2, R.1.3.B.	11/01/2023 (est.)	5/01/2020 (est.)	N/A				
AA-002, 002a AA-006a, AA-010	11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a).	11/01/2023 (est.)	5/01/2020 (est.)	N/A				
AA-003 Fugitive Emissions	40 CFR 60, Subpart OOOOa	11/01/2023 (est.)	5/01/2020 (est.)	N/A				

MS Oil Production General Permit NOI, Section OPGP-G, v. 2019.1

Compliance Plan

Section OPGP-G

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

EMISSION UNIT (Ref No.)	FEDERAL or STATE REGULATION Ex. 40 CFR Part, Subpart Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2).	CONSTRUCTION DATE	STARTUP DATE	REMOVAL DATE
AA-011 Dehydrator	40 CFR 63, Subpart HH	11/2023	11/2023	

Compliance Plan

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION				TEST METHOD/
LINIT (D CN)	APPLICABLE REQUIREMENT	POLLUTANT	LIMITS/ REQUIREMENTS	COMPLIANCE
UNII (Ref No.)	(Specific Regulatory citation)			MONITORING
Example: Compressor	Item 8 of Table 2d of 40 CFR 63, Subpart ZZZZ	HAPs	Change oil and filter every 2,160 hours of operation or annually, whichever comes first; Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.	Monitoring of compressor hours of operation
Example: Tanks	40 CFR 60.5395(a)(2)	VOC and Methane	Must reduce VOC emissions by 95.0 percent within 60 days after startup of production.	Tank emissions are routed to the flare for destruction at all times of operations.
Example: Flare	Example: Flare 11 Miss. Admin. Code Pt. 2, R.1.4.B(2).		1 grain H ₂ S per 100 standard cubic feet (1 gr/100 scf)	Recordkeeping of H2S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.
This list of example	les is not intended to be conclusive for each type of a	emission source. Thi	s list only provides examples of how the tal	ble should be completed.
AA-001, Flare & facility wide	1 Miss. Admin. Code Pt. 2, R.1.4.B(2).	H ₂ S	Any gas stream containing as much as 1 grain H_2S per 100 standard cubic feet (1 gr/100 scf) must be incinerated prior to discharge to the atmosphere	Recordkeeping of H2S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6590(a))	НАР	Applicability	Applicability Only
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6603 & Table 2(d))	НАР	Change oil and filter every 1,440 hours of operation or annually, whichever comes first; b. Inspect spark plugs every	Monitoring engine hours of operation

MS Oil Production General Permit NOI, Section OPGP-G, v. 2019.1

Section OPGP-G

Compliance Plan

Part 2. Applicable Requirements

Section OPGP-G

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE
			1,440 hours of operation or annually, whichever comes first, and replace as necessary c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary.	MONITORING
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6605)	НАР	Contiuous compliance and General Duty to operate and maintain in a manner consistent with safety and good air pollution control practies to minimize emissions	Process Knowledge
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6640 (a) and Table 6)	НАР	i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or	Process Knowledge
			maintenance plan	
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6655 (a),(d) and (e))	НАР	Recordkeeping Requiremnts	Recordkeeping
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6660 (a),(b) and (c))	НАР	General recordkeeping requirements	Recordkeeping
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6640 (b)	НАР	Report any failure to perform a required work practice as scheduled	Reporting
AA-002, AA- 002a, Engines	40 CFR 63, subpart ZZZZ, (§63.6665 (a) and Table 8)	НАР	Applicable requirements under 40 CFR 63 subpart A	Applicability

MS Oil Production General Permit NOI, Section OPGP-G, v. 2019.1

Compliance Plan

Part 2. Applicable Requirements

Section OPGP-G

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
AA-003 Fugitive Emissions	40 CFR 60.5365a(i)	VOC and Methane	Applicability	Applicability only
AA-003 Fugitive Emissions	40 CFR 60.5397a(a-g)	VOC and Methane	Develop a fugitive emission monitoring plan	Upon Startup
AA-003 Fugitive Emissions	40 CFR 60.5397a(h)	VOC and Methane	Fugitive emission source repair or replacement requirements	Written Plan development
AA-003 Fugitive Emissions	40 CFR 60.5425a and Table 3	VOC and Methane	Applicability of General Provisions of 40 CFR 60, Subpart A	Applicability only
AA-003 Fugitive Emissions	40 CFR 60.5410a(j)	VOC and Methane	Demonstration of initial compliance	Monitoring
AA-003 Fugitive Emissions	40 CFR 60.415a(h)	VOC and Methane	Demonstration of continuous compliance	Monitoring
AA-003 Fugitive Emissions	40 CFR 60.5420a(c)	VOC and Methane	Recordkeeping requirements	Monitoring and Recordkeeping
AA-003 Fugitive Emissions	40 CFR 60.5420a(b)	VOC and Methane	Reporting requirements	Reporting
AA-008 Storage Tanks	40 CFR 60.5365a(e)	VOC and Methane	Applicability determination may take into account legally and practically enforceable limit on tank emissions	Applicability Only

Compliance Plan

Part 2. Applicable Requirements

Section OPGP-G

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

EMISSION UNIT (Ref No.)	APPLICABLE REQUIREMENT (Specific Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING
AA-011	40 CFR 63.760(a)(1), (b)(2)	НАР	Applicability	Process Knowledge
AA-011	40 CFR 63.764(d)(2)(i), (ii) and (iii)	НАР	Determine optimum glycol recirculaton rate and operate so as not to exceed the optimum rate, maintain record of determination, submit Initial Notification,	Process knowledge
AA-011	40 CFR 63.764(j)	НАР	Operate and maintain in a manner consistent with safety and good air pollution control practices for minimizing emissions.	Process knowledge
AA-011	40 CFR 63.774(b)(1), (b)(2) and (g)	НАР	Recordkeeping requirements	Process knowledge
AA-011	40 CFR 63.775(c0(1)	НАР	Initial notification requirements	Process knowledge

FIGURES

FIGURE 1. TEG DEHYDRATOR BLOCK FLOW DIAGRAM

VENTURE OIL & GAS, INC. OIL AND GAS EXPLORATION, DEVELOPMENT & OPERATIONS

140 MAYFAIR ROAD, SUITE 900 HATTIESBURG, MS 39402 PHONE: 601-428-7725 Fax: 601-450-4448

DEHYDRATOR NOTIFICATION AND CERTIFICATION

In accordance with 40 CFR 63.775(c), Venture is submitting initial notification and certification of the TEG dehydration unit located at the Stringer 8-11 no. 1 facility in Smith County, Mississippi. As shown in Figure 2, the production facility is in a rural area of southern Smith County approximately 14.5 miles northwest of Laurel, Mississippi, the nearest densely settled urban area/urban cluster. The optimum glycol recirculation rate calculations in accordance with the procedures of 40 CFR 63.764(d)(2) are included in Attachment B. The TEG recirculation pump is model number 4015 manufactured by Kimray.

I certify that the TEG dehydrator located at the Stringer 8-11 facility will always be be operated using a glycol circulation rate not to exceed the optimum circulation rate determined in accordance with 40 CFR 63.7649D)(2)(I) or 63.7649D)(2)(iI), as applicable.

Date: 10/17/2023

Adam Barham Vice President-Operations

ATTACHMENT A

.

Calculations for Venture Stringer 8-11 No. 1 Tank Battery

Site Information for Calculations

109,500 bbl/yr
- mcf/yr
3,650 bbl/yr
350 bbl/day (expected maximum daily production)
0 mcf/day (expected maximum daily production)
10 bbl/day (expected maximum daily production)
49
1.31 SCF/stock tank bbl (estimated using E&P Tanks)
73.74 SCF/stock tank bbl (estimated using E&P Tanks)
0.0131 SCF/stock tank bbl (using 1% of oil tank emissions)
0.7374 SCF/stock tank bbl (using 1% of oil tank emissions)
0.00%
98.00%

•

Emission Point Summary

Emission Point Number	Emission Point Description	Design Capacity	Units	Operating Hours
AA-001	Flare	10.25	MMBtu/hr	8760
AA-001a	Flare Pilot	0.05	MMBtu/hr	8760
AA-002	Power Oil Pump Engine	165	hp	8760
AA-002a	Compressor Engine	150	hp	8760
AA-003	Fugitive emissions- equipment leaks	-	-	8760
AA-004	High Pressure Separator	-	-	8760
AA-005	Low Pressure Separator	-	-	8760
AA-006	Heater Treater	-	-	8760
AA-006a	Heater Treater (burner)	0.5	mmBtu/hr	8760
AA-007	Misc. Chemical Tanks	-	-	8760
AA-008	Oil and Water Storage Tanks	-	-	8760
AA-009	Truck Loading	16000	gal/hr	As needed
AA-010	Line heater	1	mmBtu/hr	8760
AA-011	Dehydrator	0.25	mmBtu/hr	8760

Note: Storage tanks and heater treater vent to the flare.

Proposed Annual Emissions, controlled

Emission		Annual Emissions, tpy								GHG Emissions, tpy			
Unit ID	Emission Unit	РМ	PM10	PM2.5	voc	NOx	со	SO2	Total HAPs	CO2	CH4	N2O	CO2e
AA-001	Flare	0.02	0.02	0.02	5.36	0.68	3.09	0.00	0.4894	1595.34	0.39	0.00	1605.51
AA-001a	Flare Pilot	0.00	0.00	0.00	0.00	0.02	0.02	0.00	0.0004	25.59	0.00	0.00	25.62
AA-002	Power Oil Pump Engine	0.051	0.104	0.104	0.16	11.83	19.91	0.003	0.1735	624.23	0.03	0.00	625.23
AA-002a	Compressor Engine	0.062	0.126	0.126	0.09	6.78	24.13	0.002	0.2103	756.64	0.01	0.00	757.36
AA-003	Fugitive emissions- equipment leaks	-	-	-	0.28	-	-	-	0.0159	0.03	0.01	0.00	0.38
AA-004	High Pressure Separator		Gas routed to Flare										
AA-005	Low Pressure Separator		Gas	routed to I	Flare								
AA-006	Heater Treater		Gas	routed to	Flare								
AA-006a	Heater Treater (burner)	0.00408	0.01632	0.01632	0.01181	0.21471	0.18035	0.00129	0.0041	255.45	0.00	0.00	255.71
AA-007	Misc. Chemical Tanks (4)	-	-	-	0.02	-	-	-	0.0190	-	-	-	-
AA-008	Oil and Water Tanks (4)		Gas	routed to	flare								
AA-009	Truck Loading				16.76				0.7498	0.05	0.25	0	6.24
AA-010	Line heater	0.00	0.02	0.02	0.01	0.21	0.18	0.00	0.00	255.45	0.00	0.00	255.72
AA-011	Dehydrator	0.00	0.02	0.02	8.41	0.21	0.18	0.00	1.41	127.73	3.58	0.00	217.19
	Totals	0.14	0.30	0.30	31.09	19.95	47.68	0.01	3.08	3640.50	4.28	0.00	3748.96

Notes:

Storage tanks emissions are included in flare emissions.

Potential Annual Emissions, uncontroll
--

Emission	Emission			Annual Emissions, tpy						GHG Emissions, tpy			
Unit ID	Emission Unit	РМ	PM10	PM2.5	voc	NOx	со	SO2	Total HAPs	CO2	CH4	N2O	CO2e
AA-001	Facility gas emissions	-	-	-	267.96	-	-	-	24.47	0.79	9.02	0.00	226.20
AA-002	Power Oil Pump Engine	0.051	0.104	0.104	0.16	11.83	19.91	0.003	0.17	624.23	0.01	0.00	624.88
AA-002a	Compressor Engine	0.062	0.126	0.126	0.19	14.34	24.13	0.004	0.21	756.64	0.01	0.00	757.43
AA-003	Fugitive emissions- equipment leaks	-	-	-	0.28	-	-	-	0.02	0.03	0.33	0.00	8.21
AA-004	High Pressure Separator	Gas routed to Flare											
AA-005	Low Pressure Separator		Gas routed to Flare										
AA-006	Heater Treater		Gas	routed to I	Flare								
AA-006a	Heater Treater (burner)	0.00	0.02	0.02	0.01	0.21	0.18	0.00	0.0041	232.23	0.00	0.00	232.47
AA-007	Misc. Chemical Tanks	-	-	-	0.02	-	-	-	0.02	-	-	-	-
AA-008	Oil and Water Storage Tanks		Gas	routed to	flare								
AA-009	Truck Loading				16.76				0.7498	0.05	0.25	0	6.24
AA-010	Line heater	0.00	0.02	0.02	0.01	0.21	0.18	0.00	0.00	255.45	0.00	0.00	255.72
AA-011	Dehydrator	0.00	0.02	0.02	8.41	0.21	0.18	0.00	1.41	127.73	3.58	0.00	217.19
	Totals	0.12	0.28	0.28	293.79	26.81	44.58	0.01	27.06	1997.14	13.20	0.00	2328.32

Notes:

Storage tanks emissions are included in flare emissions, AA-001.

Emission					Emissio	ons, Ib/h	r			GHG Emissions, lb/hr			
Unit ID	Emission Unit	РМ	PM10	PM2.5	voc	NOx	со	SO2	Total HAPs	CO2	CH4	N2O	CO2e
AA-001	Flare	0.00	0.00	0.00	1.22	0.15	0.70	0.00	0.13	364.23	0.09	0.00	366.55
AA-001a	Flare Pilot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.84	0.00	0.00	5.85
AA-002	Power Oil Pump Engine	0.01	0.02	0.02	0.04	2.70	4.55	0.00	0.04	142.52	0.01	0.00	142.75
AA-002a	Compressor Engine	0.01	0.03	0.03	0.04	3.27	5.51	0.00	0.05	172.75	0.00	0.00	172.93
AA-003	Fugitive emissions- equipment leaks	-	-	-	0.06	-	-	-	0.00	0.01	0.00	0.00	0.09
AA-004	High Pressure Separator		GAS ROUTED TO FLARE										
AA-005	Low Pressure Separator				GAS ROU	TED TO FL	ARE			Beneral to the Distance Prove			
AA-006	Heater Treater				GAS ROU	TED TO FL	ARE						
AA-006a	Heater Treater (burner)	0.00	0.00	0.00	0.00	0.05	0.04	0.00	0.00	58.32	0.00	0.00	58.38
AA-007	Misc. Chemical Tanks	-	-	-	0.00	-	-	-	0.00	-	-	-	0.00
AA-008	Oil and Water Storage Tanks				GAS ROU	TED TO FL	ARE						
AA-009	Truck Loading	-		-	117.72		-	-	5.27	0.01	0.06	0	1.42
AA-010	Line Heater	0.00	0.00	0.00	0.00	0.05	0.04	0.00	0.00	58.32	0.00	0.00	58.38
AA-011	Dehydrator	0.00	0.00	0.00	1.92	0.05	0.04	0.00	0.32	29.16	0.82	0.00	49.59
	Totals	0.03	0.07	0.07	121.02	6.28	10.89	0.00	5.82	831.16	0.98	0.00	855.94

Facility Maximum Hourly Emissions, Controlled

Notes:

4.38

Storage tanks emissions are included in flare emissions.

Truck loading hourly emissions are dictated by the capacity of the transfer pump

Flash Gas Analysis and Conversions

Component	VOC and/or HAP?	Mol %	Wt %
Total S	None	***	0.00000%
CO2	None	0.362%	0.160%
N2	None	0.000%	0.000%
Methane	None	11.546%	1.852%
Ethane	None	6.480%	1.949%
Propane	VOC	19.755%	8.712%
Isobutane	VOC	20.171%	11.724%
Butane	VOC	12.576%	7.309%
Isopentane	VOC	9.194%	6.633%
Pentane	VOC	5.953%	4.295%
Hexane	VOC	3.906%	3.366%
Heptanes	VOC	6.630%	6.644%
Benzene	VOC and HAP	0.390%	0.544%
Toluene	VOC and HAP	0.388%	0.639%
e-Benzene	VOC and HAP	0.015%	0.028%
Xylenes	VOC and HAP	0.211%	0.400%
n-hexane	VOC and HAP	2.422%	3.726%
Total VOC		79.190%	54.020%
Total HAP		3.426%	5.337%

Heat of combustion, Btu/ft ³	2465.9
Molecular weight	46.02

Gas analysis generated by E&P Tanks software.

Produced Gas Analysis and Conversions

Component	VOC and/or HAP?	Mol %	Wt %
Total S	None	0.000%	0.00000%
CO2	None	2.157%	4.579%
N2	None	0.891%	1.204%
Methane	None	81.104%	62.757%
Ethane	None	9.041%	13.112%
Propane	VOC	7.242%	7.242%
Isobutane	VOC	0.783%	2.195%
Butane	VOC	1.187%	3.328%
Isopentane	VOC	0.413%	1.437%
Pentane	VOC	0.371%	1.291%
Hexane	VOC	0.000%	0.565%
n-Hexane	VOC and HAP	0.136%	0.565%
Heptanes+	VOC	0.297%	2.290%
Benzene	VOC and HAP	0.042%	0.051%
Toluene	VOC and HAP	0.010%	0.039%
e-Benzene	VOC and HAP	0.001%	0.004%
Xylenes	VOC and HAP	0.007%	0.020%
Total VOC		6.807%	18.348%
Total HAP		0.196%	0.679%

Heat of combustion, Btu/ft ³	1353.0
Molecular weight	26.18

TANK	w	&	в	GAS	COMP	OSITION
------	---	---	---	-----	------	---------

Component	VOC and/or HAP?	Mol %	Wt %	
Total S	None	0.000%	0.00000%	
CO2	None	0.32%	0.25%	4
N2	None	0.00%	0.00%	28
Methane	None	4.76%	1.35%	16
Ethane	None	7.23%	3.86%	30
Propane	VOC	24.31%	19.03%	4
Isobutane	VOC	23.60%	24.34%	58
Butane	VOC	14.17%	14.62%	58
Isopentane	VOC	9.38%	12.01%	72
Pentane	VOC	5.77%	7.39%	72
Hexane	VOC	3.28%	5.02%	86
Heptanes+	VOC	4.52%	8.03%	100
Benzene	VOC and HAP	0.32%	0.44%	78
Toluene	VOC and HAP	0.27%	0.44%	92
e-Benzene	VOC and HAP	0.01%	0.02%	106
Xylenes	VOC and HAP	0.12%	0.23%	106
n-hexane		1.95%	2.98%	86
Total VOC		85.75%	91.56%	
Total HAP		2.660%	4.10%	

4.1 0.140414 .01 0 0.762878 0.07 2.174783 4.1 10.72005 3.12 13.71649 8.12 8.235546 2.15 6.766083 .15 4.163055 5.18 2.8286 .21 4.526586 8.11 0.247531 0.245092 5.17 0.009449 5.16 0.129091 5.18 1.677235 56.34289

0.749809

Heat of combustion, Btu/ft ³	2796.8
Molecular weight	51.43

Note: W&B vapors and truck loading vapors assumed to have same composition Gas analysis generated by E&P Tanks software.

Tank Uncontrolled Emissions Summary

			Initial	
	<u>Potential</u>		Production	
Total flash gas,	8,077,222	SCF/yr	1,076	SCF/hr
Total flash gas,	479.88	tpy	127.82	lb/hr
Total tank W&B loss	143,493	SCF/yr	19	SCF/hr
Total tank W &B losses	9.53	tpy	2.54	lb/hr
Total tank emissions	489.41	tpy	130.35	lb/hr
Tank emissions to flare	489.41	tpy	130.35	lb/hr
	2691.51			
	0.16	0.15	0.0004	

Notes:

1. Total flash gas calculated using gas/oil ratio from E&P tanks program and potential crude and water production

2. All tank emissions included with flare, Emission Point AA-001.

Calculation of Criteria and Hazardous Flare Emissions Using 30-day Average Production Values

Gas Flow to Flare:		-
		Potential
Flow to flare of tank flash gas	=	479.88 tpy
Flow to flare of tank W&B emissions		9.53 tpy
flow to flare from truck loading	=	0.00 tpy
Total process gas to flare	2	489.41 tpy
Produced gas to flare	=	0.00 tpy
	=	0.00 mcf/yr
Produced gas combustion heat	=	0.00 MMBtu/yr
process gas combustion heat	=	19903.96 MMBtu/yr
flare gas combustion heat, total	=	19903.96 MMBtu/yr

			<u>Potentia</u>		Potential Emissions			
	Pollutant	Emission factor, lbs/MMBtu	<u>ib/hr</u>	tpy	Pollutant	<u>ib/hr</u>	tpy	
	NOx	0.068	0.155	0.677	n-hexane	0.0759	0.3326	
Calculation	CO	0.31	0.704	3.085	benzene	0.0121	0.0531	
	PM	0.00186	0.004	0.019	e-benzene	0.0006	0.0028	
	VOC	mass balance	1.224	5.359	toluene	0.0142	0.0621	
	SO2	mass balance	0.000	0.000	xylenes	0.0089	0.0388	
I	PM10/PM2.5	0.00745	0.017	0.074	Total HAPs	0.1117	0.4894	

Notes:

- 1. Emission factors from AP-42, Table 13.5-1, are used to calculate NOx and CO emissions, and PM emission factor from AP-42, Table 1.4-2.
- 2. Mass balance calculations utilize flare input gas flow and a flare destruction efficiency of 98% minimum.
- 3. Mass balance for sulfur assumes all sulfur converted to SO2 in flare.
- ank Battery HAP emissions calculated using mass balance and 98% destruction efficiency

Oil General Permit Coverage Application

Calculation of Maximum Hourly Criteria and Hazardous Flare Emissions Using Initial Production Values

2.65 MMBtu/hr

Gas Flow to Flare:		
		Potential
Flow to flare of tank flash gas	2	127.82 lbs/hr
Flow to flare of tank W&B emissions		2.54 lbs/hr
flow to flare from truck loading	2	0.00 lbs/hr
Total process gas to flare	=	130.35 lbs/hr
Produced gas to flare	=	0.00 lbs/hr
	=	0.00 mcf/hr
Produced gas combustion heat	=	0.00 MMBtu/hr
process gas combustion heat	=	2.65 MMBtu/hr

flare gas combustion heat, total

			Maximum Hourly Emissions		Potential Emissions		
	Pollutant	Emission factor, lbs/MMBtu	<u>lb/hr</u>	Pollutant	<u>lb/hr</u>		
	NOx	0.068	0.180	n-hexane	0.0886		
Calculation	со	0.37	0.981	benzene	0.0141		
	PM	0.00745	0.020	e-benzene	0.0007		
	VOC	mass balance	1.427	toluene	0.0165		
	SO2	mass balance	0.000	xylenes	0.0103		
				Total HAPs	0.1304		

=

Notes:

1. Emission factors from AP-42, Table 13.5-1, are used to calculate NOx and CO emissions, and PM emission factor from AP-42, Table 1.4-2.

- 2. Mass balance calculations utilize flare input process gas flow and a flare destruction efficiency of 98% minimum.
- 3. Mass balance for sulfur assumes all sulfur converted to SO2 in flare.
- 4. HAP emissions calculated using mass balance and 98% destruction efficiency

Calculation of Uncontrolled Emissions of Produced Gas

		Potential
Flow to flare from tank flash gas	=	479.88 tpy
Flow to flare from tank W&B emissions	=	9.53
flow to flare from truck loading	=	0.00 tpy
Produced gas to flare from separators	=	0.00 tpy

		Potential Emissions			
Pollutant	Emission factor, lbs/MMBtu	<u>lb/hr</u>	tpy		
VOC	mass balance	61.177	267.96		
H2S	mass balance	0.000	0.00		
n-hexane	mass balance	3.797	16.63		
benzene	mass balance	0.606	2.65		
e-benzene	mass balance	0.032	0.14		
toluene	mass balance	0.709	3.11		
Calculation xylenes	mass balance	0.443	1.94		
total HAPs	mass balance	5.587	24.47		
methane	mass balance	2.059	9.02		
CO2	mass balance	0.180	0.79		

Note: For calculation of uncontrolled emissions, flare efficiency is 0%.

Venture Stringer 8-11 No. 2 Tank Battery Oil General Permit Coverage Application

Calculation of Flare GHG Emissions

Process gas to flare, mmcf/yr
N2O emission factor, kg/mmBtu
HHV, mmBtu/scf
CO2 density, kg/ft3
CH4 density, kg/ft3
flare efficiency

8.07
0.0001
0.001235
0.052600
0.019200
98.00%

PROCESS GAS

carbon	CO2 (from combustion)		CO2 Input	CH4, unco	mbusted	N2O	CO2e						
atoms	cubic ft. tpy		tpy	cubic ft. tpy ¹		tpy1	tpy						
			1.69E+00	1.86E+04	3.94E-01	1.10E-03	1.19E+01						
1	9.13E+05	5.28E+01	*				5.28E+01						
2	1.03E+06	5.93E+01					5.93E+01						
3	4.69E+06	2.71E+02					2.71E+02						
4	1.04E+07	6.00E+02					6.00E+02						
5+	1.06E+07	6.11E+02					6.11E+02						
Total	2.75E+07	1.59E+03	1.69E+00	1.86E+04	3.94E-01	1.10E-03	1.61E+03						

PRODUCED GAS

produced gas to flare, mmcf/yr

carbon	CO2 (from c	ombustion)	CO2 input	CH4, unco	ombusted	N2O	CO2e tpy	
atoms	cubic ft.	tpy	tpy	cubic ft.	tpy	tpy		
			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
1	0.00E+00	0.00E+00					0.00E+00	
2	0.00E+00	0.00E+00					0.00E+00	
3	0.00E+00	0.00E+00					0.00E+00	
4	0.00E+00	0.00E+00					0.00E+00	
5+	0.00E+00	0.00E+00					0.00E+00	
Total	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	

Note: GHG emissions calculated using procedures from 40 CFR 98.233(n)(4)

0.00

Equipment Component Fugitive Emissions

Components	Counts	Emission Factor ¹	Emissions	Wt. Fraction VOC Emissions		VOC Emissions		VOC Emissions VOC%		VOC% HAP Emissions			GHG Emissions, ton/yr			
		scf/hr/component	lbs/hr	voc	lb/hr	tpy	HAP ³	lb/hr	tpy	CO2	CH4	CO2e				
Valves:	37															
gas/vapor	24	0.027	0.044702609	0.18	0.008	0.04	0.68%	0.000	0.001	0.007087	0.097233	2.44				
light oil ²	13	0.05	0.04484058	0.54	0.024	0.11	5.34%	0.002	0.010	0.007109	0.088667	2.22				
heavy oil	0	0.0005	0	0.18	0.000	0.00	0.68%	0.000	0.000	0	0	0.00				
Pumps:			0	0.18			0.68%	0.000	0.000	0	0	0.00				
Light oil	0	0.01	0	0.73	0.000	0.00	1.66%	0.000	0.000	0	0	0.00				
heavy oil	0	0	0	0.18			0.68%	0.000	0.000	0	0	0.00				
Flanges:	46	_	0	0.18			0.68%	0.000	0.000	0	0	0.00				
gas/vapor		0	0	0.18	0.000	0.00	0.68%	0.000	0.000	0	0	0.00				
light oil	46	0.003	0.00952	0.73	0.007	0.03	1.66%	0.000	0.001	0.001509	0.018825	0.47				
heavy oil	0	0.0009	0	0.18	0.000	0.00	0.68%	0.000	0.000	0	0	0.00				
Relief Valve:			0	0.18			0.68%	0.000	0.000	0	0	0.00				
gas/vapor	4	0.04	0.011037681	0.18	0.002	0.01	0.68%	0.000	0.000	0.00175	0.021826	0.55				
Connectors:	101		0	0.18			0.68%	0.000	0.000	0	0	0.00				
gas/vapor	67	0.003	0.013866087	0.18	0.003	0.01	0.68%	0.000	0.000	0.002198	0.027418	0.69				
light oil	34	0.007	0.016418551	0.73	0.012	0.05	1.66%	0.000	0.001	0.002603	0.032466	0.81				
heavy oil	0	0.0003	0	0.18	0.000	0.02	0.68%	0.000	0.000	0	0	0.00				
Other	1	0.3	0.020695652	0.18	0.004	0.02	1.66%	0.000	0.002	0.003281	0.040923	1.03				
				Totals	0.060	0.278		0.004	0.016	0.026	0.327	8.209				

Notes:

1. Emission factors and equipment counts taken from 40 CFR 98, subpart W.

2. Light oil is defined as having API gravity greater than or equal to 20 degrees API.

Vapors emitted from gas service equipment assumed to be same as produced gas, vapor from liquid service equipment assumed to be the same as flash gas

om liquid service equipment assumed to be the same as flash gas.				heater treater		1	8	12	20	0	0
		lb/hr	tpy	header		0	0	0	0	0	0
	n-hexane	0.00303	0.01327	separator		2	12	24	20	0	
	benzene	0.00027	0.00120	meters/piping		0	0	0	0	0	0
	ethyl benzene	0.00002	0.00009	compressor		1	12	0	57	4	0
	toluene	0.00021	0.00092	dehydrator		0	0	0	0	0	0
	xylene	0.00011	0.00047		total		37	46	101	4	1

Equipment

wellhead

Count

Valves

1

5

Flanges Fittings

10

Other

1

0

prv

4

Venture Stringer 8-11 No. 2 Tank Battery Oil General Permit Coverage Application

ENGINE POTENTIAL EMISSIONS CALCULATIONS

		Heat Input			Emissions, tpy						GHG Emissions, tons/yr		
Engine No.	HP	mmBtu/hr	NOx	VOC	СО	SO2	TSP	PM10	PM2.5	CO2	CH4	N20	CO2e
AA-002	165	1.22	11.83	0.16	19.91	0.00	0.05	0.10	0.10	624.23	1.18E-02	0.001	624.88
AA-002a	200	1.48	14.34	0.19	24.13	0.00	0.06	0.13	0.13	756.64	1.43E-02	0.001	757.43
		Total	26.16	0.35	44.04	0.01	0.11	0.23	0.23	1380.88	0.03	0.00	1382.30

	AP-42		GHG Emission
Pollutant	Emission Factor	Conversion Factor, g to lbs	Factors
	lbs/MMBtu	0.0022046	kg/mmBtu
NOx	2.21	CO2	53.02
VOC	0.0296	CH4	0.001
СО	3.72	N2O	0.0001
SO2	0.000588		
PM10	0.00950		
PM2.5	0.00950		
PM cond	0.00991		

ENGINE HAP EMISSIONS CALCULATIONS

	Natural Gas	ΔΑ-	002	AA-002a		
	Emission Factor,	HAP EM	ISSIONS	HAP EM	ISSIONS	
НАР	lbs/mmBtu	lbs/hr	tpy	lbs/hr	tpy	
1,1,2,2-Tetrachloroethane	2.53E-05	3.09E-05	1.35E-04	3.75E-05	1.64E-04	
1,1,2-Trichloroethane	1.53E-05	1.87E-05	8.19E-05	2.27E-05	9.92E-05	
1,3-Butadiene	6.63E-04	8.10E-04	3.55E-03	9.82E-04	4.30E-03	
1,3-Dichloropropene	1.27E-05	1.55E-05	6.80E-05	1.88E-05	8.24E-05	
Acetaldehyde	2.79E-03	3.41E-03	1.49E-02	4.13E-03	1.81E-02	
Acrolein	2.63E-03	3.21E-03	1.41E-02	3.90E-03	1.71E-02	
Benzene	1.58E-03	1.93E-03	8.46E-03	2.34E-03	1.02E-02	
Carbon Tetrachloride	1.77E-05	2.16E-05	9.47E-05	2.62E-05	1.15E-04	
Chlorobenzene	1.29E-05	1.58E-05	6.90E-05	1.91E-05	8.37E-05	
Chloroform	1.37E-05	1.67E-05	7.33E-05	2.03E-05	8.89E-05	
Ethylbenzene	2.48E-05	3.03E-05	1.33E-04	3.67E-05	1.61E-04	
Ethylene Dibromide	2.13E-05	2.60E-05	1.14E-04	3.15E-05	1.38E-04	
Formaldehyde	2.05E-02	2.50E-02	1.10E-01	3.04E-02	1.33E-01	
Methanol	3.06E-03	3.74E-03	1.64E-02	4.53E-03	1.98E-02	
Methylene Chloride	4.12E-05	5.03E-05	2.20E-04	6.10E-05	2.67E-04	
Naphthalene	9.71E-05	1.19E-04	5.20E-04	1.44E-04	6.30E-04	
РАН	1.41E-04	1.72E-04	7.55E-04	2.09E-04	9.15E-04	
Styrene	1.19E-05	1.45E-05	6.37E-05	1.76E-05	7.72E-05	
Toluene	5.58E-04	6.82E-04	2.99E-03	8.26E-04	3.62E-03	
Vinyl Chloride	7.18E-06	8.77E-06	3.84E-05	1.06E-05	4.66E-05	
Xylene	1.95E-04	2.38E-04	1.04E-03	2.89E-04	1.26E-03	
Total		3.96E-02	1.73E-01	4.80E-02	2.10E-01	
AA-002 heat input=	1.22	mmBtu/hr				
	1 40	man and Data a line				

AA-002a heat input=

1.48 mmBtu/hr 8760

annual operating hours=

Emission factors from AP-42, Table 3.2-3

Truck Loading Emissions Calculations 30-Day Average production

Basis: 30 day average production rates

L_L = 12.46 *(SPM)/T

(from EPA AP-42 Section 5.2.2.1)

Where:

- L_L = Loading loss, lbs per 1,000 gal of liquid loaded
- S = Saturation factor
- P = True vapor pressure of liquid, psia
- M = Molecular weight of vapors, lb/lb-mole
- T = Temperature of bulk liquid loaded, degrees R

CRUDE OIL

EPA "S" Factor	True VP of Liquid (psia)	Mol. Wt. Of Vapors (Ib/Ib- mole)	Temp. of Liquid (R)	Sales Volume (10 ³ gal/yr)	Loading Rate (gal/hr)	Uncont E Total	rolled Es Emissions Hydrocar (Ib/hr)	timated s, rbons (tpy)
1.45	5	48.00	545	4,599	16,000	7.96	127.30	18.30

PRODUCED WATER

Calculation	EPA "S" Factor	True VP of Liquid	Mol. Wt. Of Vapors	Temp. of Liquid	Loaded Volume	Loading Rate	Uncont E Total	rolled Es missions Hydroca	timated s, rbons
		(psia)	(lb/lb- mole)	(R)	(10 ³ gal/yr)	(gal/hr)	L	(lb/hr)	(tpy)
	1.45	0.05	48.00	545	153	16,000	0.08	1.27	0.01

HAPs	tons/yr
Benzene	0.080402
Toluene	0.07961
e-Benzene	0.003069
Xylenes	0.041931
n-hexane	0.544796
	0.749809

Truck Loading Emissions Calculations, Maximum Ibs/hr

L_L = 12.46 *(SPM)/T

(from EPA AP-42 Section 5.2.2.1)

Where:

 L_L = Loading loss, lbs per 1,000 gal of liquid loaded

S = Saturation factor

P = True vapor pressure of liquid, psia M = Molecular weight of vapors, Ib/Ib-mole

T = Temperature of bulk liquid loaded, degrees R

CRUDE OIL

				011000 010				
EPA "S" Factor	True VP of	Mol. Wt. Of Vapors	Temp. of	Sales Volume	Loading Rate	Uncont E Total	missions	timated s, rbons
1 deter	(psia)	(lb/lb- mole)	'(R)	(10 ³ gal/hr)	(gal/hr)	L	(lb/hr)	
1.45	5	48.00	545	16.0	16,000	7.96	127.30	

PRODUCED WATER

	EPA "S"	True VP of	Mol. Wt. Of	Temp. of	Loaded Volume	Loading Rate	Uncont	rolled Est	timated
Calculation	Factor	Liquid	Vapors	Liquid			Total	Hydrocar	bons
		(psia)	(lb/lb- mole)	`(R)	(10 ³ gal/hr)	(gal/hr)	LL	(lb/hr)	
	1.45	0.05	48.00	545	16.0	16,000	0.08	1.27	

HAPs	lbs/hr
Benzene	0.564848
Toluene	0.559285
e-Benzene	0.021562
Xylenes	0.294576
n-hexane	3.82734
total	5.267611

External Combustion Equipment Emissions Calculations

	Capacity		Emissions, tons/yr									GHG Emissions, metric tons/yr		
Source	MMBtu/hr	PM	PM10	Pm 2.5	NOx	СО	VOC	SO2	HAP	CO2	CH4	N20	CO2e	
Heater Tre	0.5	0.004	0.016	0.016	0.215	0.180	0.012	0.001	0.004	255.45	0.00	0.00	255.72	
Line Heate	0.5	0.004	0.016	0.016	0.215	0.180	0.012	0.001	0.000	255.45	0.00	0.00	255.72	
Dehy	0.25	0.002	0.008	0.008	0.107	0.090	0.006	0.001	0.000	127.73	0.00	0.00	127.86	
Totals		0.010	0.041	0.041	0.537	0.451	0.030	0.003	0.004	638.626	0.012	0.001	639.300	

Ap-42 r Emissic	Ap-42 natural gas combustion Emission Factors, lbs/MMBtu							
Pm	0.001863							
PM10	0.007451							
PM2.5	0.007451							
NOx	0.098039							
CO	0.082353							
VOC	0.005392							
SO2	0.000588							
HAPs	0.001851							

40 CFR 98, subpart C						
Emission Factors, kg/MMBtu						
CO2	53.02					
CH4	0.001					
N20	0.0001					

Dehydrator Regenerator Overhead Gas

Dehydrator Regenerator Flash Gas

Componen	Units	Flow	Component	Units	Flow
Methane	tpy	0.20	Methane	tpy	3.37
Ethane	tpy	0.40	Ethane	tpy	2.01
Propane	tpy	0.60	Propane	tpy	1.43
Isobutane	tpy	0.26	Isobutane	tpy	0.43
Butane	tpy	0.66	Butane	tpy	0.84
Isopentane	tpy	0.25	Isopentane	tpy	0.29
Pentane	tpy	0.36	Pentane	tpy	0.33
Hexanes	tpy	0.97	Hexane+	tpy	0.52
Heptane+	tpy	1.14	Heptane+	tpy	0.31
Benzene	tpy	1.28	Benzene	tpy	0.00
n-Hexane	tpy	0.00	n-Hexane	tpy	0.00
toluene	tpy	0.10	toluene	tpy	0.00
Xylenes	tpy	0.02	Xylenes	tpy	0.00
Total VOC	tpy	4.24	Total VOC	tpy	4.15
Total HAPs	tpy	1.41	Total HAPs	tpy	0.00

Emissions calculated using GLYCALC simulation software

Natural Gas Combustion HAP Calculations

	Natural Gas Emission Factor.	Heater Treater		Dehydrator		Line Heater	
НАР	lbs/mmBtu	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy
Benzene	2.06E-06	1.03E-06	4.51E-06	5.15E-07	2.25E-06	1.03E-06	4.51E-06
Dichlorobenzene	1.18E-06	5.88E-07	2.58E-06	2.94E-07	1.29E-06	5.88E-07	2.58E-06
Formaldehyde	7.35E-05	3.68E-05	1.61E-04	1.84E-05	8.05E-05	3.68E-05	1.61E-04
Hexane	1.76E-03	8.82E-04	3.86E-03	4.41E-04	1.93E-03	8.82E-04	3.86E-03
Naphthalene	5.98E-07	2.99E-07	1.31E-06	1.50E-07	6.55E-07	2.99E-07	1.31E-06
Polycyclic Organic Matter	2.38E-05	1.19E-05	5.21E-05	5.95E-06	2.61E-05	1.19E-05	5.21E-05
Toluene	3.33E-06	1.67E-06	7.30E-06	8.33E-07	3.65E-06	1.67E-06	7.30E-06
Total		9.35E-04	4.09E-03	4.67E-04	2.05E-03	9.35E-04	4.09E-03
Burner Heat Input=	0.50	mmBtu/hr					
Flare Pilot Heat Input=	0.25	mmBtu/hr					

8760

Line Heater Heat Input= 0.50 mmBtu/hr

annual operating hours=

Emission factors from AP-42, Table 1.4-3

Venture Stringer 8-11 No. 2 Tank Battery Oil General Permit Coverage Application

·

FLARE PILOT CALCULATIONS

Emission	Combustion	Capacity		Criteria Emissions, tons/yr						
Unit ID	Source	ммвтин	PM	PM10	PM2.5	NOx	CO	VOC	SO2	HAP
AA-001a	Flare (Pilot)	0.05	0.000	0.002	0.002	0.021	0.018	0.001	0.000	0.000

Emission	Combustion	Capacity	GHG Emissions, metric tons/yr			GHG Emissions, short tons/yr				
Unit ID	Source	MMBTUH	CO2	CH4	N2O	CO2e	CO2	CH4	N2O	CO2e
AA-001a	Flare (Pilot)	0.05	23.223	0.000	0.000	23.246	25.59	0.00	0.00	25.62

	Gas combustion						
AP-42 Em	ission Factors, lbs/MMBtu	Emission Factors, kg/MMBtu					
TSP	0.001863	CO2	53.02	-			
PM10	0.007451	CH4	0.001				
PM2.5	0.007451	N2O	0.0001				
NOx	0.098039						
CO	0.082353						
VOC	0.005392						
SO2	0.000588						
HAPs	0.001851						

•

APPENDIX B: BACKUP DOCUMENTATION

Calculations for 40 CFR 63, Subpart HH – Glycol Optimal Circulation Rate

$$L_{OPT} = 1.15 * 3.0 \frac{\text{gal TEG}}{\text{lb H}_2\text{O}} * \left(\frac{F*(I-O)}{24 \text{ hr/day}}\right)$$

Where:

LOPT = Optimal circulation rate, gal/hr.

F = Gas flowrate (MMSCF/D).

I = Inlet water content (Ib/MMSCF).

O = Outlet water content (lb/MMSCF).

3.0 = The industry accepted rule of thumb for a TEG-to water ratio (gal TEG/lb H_2O).

1.15 = Adjustment factor included for a margin of safety.

F = 4.82 MMCF/D (Sept 21 – Sept 27 sales average)

- I = 65 lb/MMSCF (assuming 800 psi, 95 deg F)
- O = 3 lb/MMSCF (based on Draeger tubes for sales gas)

Lopt = 43 gal/hr

Per discussions with Don Heap, we are currently circulating 40 gal/hr. Since our circulation rate is not above the calculated optimal circulation rate, no additional analysis is needed.

DELBERT HOSEMANN Secretary of State

This is not an official certificate of good standing.

Name History		
Name		Name Type
VENTURE OIL & GAS INC.		Legal
Business Information		
Business Type:	Profit Corporation	
Business ID:	558492	
Status:	Good Standing	
Effective Date:	11/07/1988	
State of Incorporation:	Mississippi	
Principal Office Address:		
Pagistanad A gant		
Neme		
JAY DONALD FENTON 207 South 13th Avenue Laurel, MS 39440		
Officers & Directors		
Name	Title	
Jay Donald Fenton 332 Luther Hill Road, A Ellisville, MS 39437	Incorporator	
William Edward Carpenter 112 Westminister Drive Hattiesburg, MS 39401	Incorporator	
Jay Donald Fenton 332 Luther Hill Rd Ellisville, MS 39437	Director, President	
Neil Scrimpshire 9 Heritage Trail Laurel, MS 39440	Director, Secretary, Vice President	