C. ood divindend Could be Constituted to the Country of the Countr





140 MAYFAIR ROAD, SUITE 900 HATTIESBURG, MS 39402



PHONE: 601-428-7725 Fax: 601-450-4448

February 24, 2025

Mr. Jeffrey Bland, P.E. **Environmental Permits Division** Mississippi Department of Environmental Quality PO Box 2261 Jackson, MS 39225-2261

Dear Mr. Bland:

Re:

Venture Oil & Gas Inc. Stone 9-5 No. 1 Tank Battery, AI 82364

MSOPGP1300-00086

Oil Production General Permit NOI Modification

Venture Oil & Gas Inc. is submitting the enclosed NOI for modification of coverage under the Oil Production General Permit for the Stone 9-5 No. 1 facility in Jasper County, MS. The compressor engine identified as 150 hp in the original submittal will instead utilize a 215 hp engine. Enclosed are the updated application forms and emissions calculations. If you have any questions, please feel free to contact me at (601) 428-2257.

Sincerely,

Dan Watts **EHS Director** 

1 an War

| Facility (Agency Interest) Information                                                                                                                                                                                                                                                                                                                              | Section OPGP - A                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1. Name, Address, and Location of Facility                                                                                                                                                                                                                                                                                                                          | 10 mm from 5                          |
| A. Owner/Company Name: Venture Oi                                                                                                                                                                                                                                                                                                                                   | l & Gas Inc.                          |
| B. Facility Name (if different than A. above):                                                                                                                                                                                                                                                                                                                      | Venture Stone 9-5 No. 1 Facility      |
| C. Facility Air Permit/Coverage No. (if known)                                                                                                                                                                                                                                                                                                                      | MSOPGP1300-00086                      |
| D. Agency Interest No. (if known):                                                                                                                                                                                                                                                                                                                                  | 82364                                 |
| E. Physical Address  1. Street Address: Field Road off of Jasp  2. City: Stringer                                                                                                                                                                                                                                                                                   | er County Road 713  3. State: MS      |
| 4. County: Jasper                                                                                                                                                                                                                                                                                                                                                   | 5. Zip Code: <u>39481</u>             |
| 6. Telephone No.: 601-518-0622                                                                                                                                                                                                                                                                                                                                      | 7. Fax No.:                           |
| 8. Are facility records kept at this location?                                                                                                                                                                                                                                                                                                                      | Yes No. Please complete Item 10.      |
| 2. City: Laurel 4. Zip Code: 39440  G. Latitude/Longitude Data 1. Collection Point (check one):  ☐ Site Entrance  2. Method of Collection (check one):  ☐ GPS Specify coordinate sys  ☐ Map Interpolation (Google Earth, of the system)  3. Latitude (degrees/minutes/seconds): 4. Longitude (degrees/minutes/seconds): 5. Elevation (feet): 350  H. SIC Code: 1311 | i i i i i i i i i i i i i i i i i i i |
| 2. Name and Address of Facility Contact                                                                                                                                                                                                                                                                                                                             |                                       |
| A. Name: Dan Watts                                                                                                                                                                                                                                                                                                                                                  | Title: EHS Director                   |
| and sales as a second sales and                                                                                                                                                                                                                                                                                                                                     | ir Road, Suite 900                    |
| 2. City: Hattiesburg                                                                                                                                                                                                                                                                                                                                                | 3. State: MS                          |
| 4. Zip Code: 39402                                                                                                                                                                                                                                                                                                                                                  | 5. Fax No.: <u>601-450-4448</u>       |
| 6. Telephone No.: 601-428-2257                                                                                                                                                                                                                                                                                                                                      |                                       |
| 7. Email: dwatts@venture-inc.com                                                                                                                                                                                                                                                                                                                                    | •                                     |

| Facility (Agency Interest) Information                                                                     | Section OPGP - A                                     |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 3. Name and Address of Air Contact (if differe                                                             | ent from Facility Contact)                           |
|                                                                                                            |                                                      |
| A. Name:                                                                                                   | Title:                                               |
|                                                                                                            |                                                      |
| B. Mailing Address                                                                                         |                                                      |
| 1. Street Address or P.O. Box:                                                                             |                                                      |
| 2. City:                                                                                                   | 3. State:                                            |
| 4. Zip Code:                                                                                               | 5. Fax No.:                                          |
| 6. Telephone No.:                                                                                          |                                                      |
| 7. Email:                                                                                                  |                                                      |
| A Name and Address of Description Officials                                                                | C Al To 114.                                         |
| 4. Name and Address of Responsible Official factorial The Form must be signed by a Responsible Official as |                                                      |
| The Form must be signed by a Responsible Official as                                                       | defined in 11 Miss. Admin. Code 1 i.2, R. 2.1.C(24). |
| A. Name: Adam Barham                                                                                       | Title: VP-operations                                 |
| A. Name. Adam Barian                                                                                       | Title. VI-operations                                 |
| B. Mailing Address                                                                                         |                                                      |
| <u> </u>                                                                                                   | Road, Suite 900                                      |
| 2. City: Hattiesburg                                                                                       | 3. State: MS                                         |
| 4. Zip Code: 39402                                                                                         | 5. Fax No.: 601-450-4448                             |
| 6. Telephone No.: 601-518-0624                                                                             |                                                      |
| 7. Email: abarham@venture-inc.com                                                                          |                                                      |
|                                                                                                            |                                                      |
| C. Is the person above a duly authorized represen                                                          | ntative and not a corporate officer?                 |
| .□ Yes ☑ No                                                                                                |                                                      |
| If yes, has written notification of such authorizati                                                       | ion been submitted to MDEO?                          |
| Yes No                                                                                                     | Request for authorization is attached                |
|                                                                                                            |                                                      |
| 5. Type of Oil Production Notice of Intent (Ch                                                             | eck all that apply)                                  |
|                                                                                                            |                                                      |
| ☐ Initial Coverage                                                                                         | ☐ Re-Coverage for existing Coverage                  |
| ☐ Modification with Public Notice                                                                          | ☑ Modification without Public Notice                 |
| iviodification with I dolle Notice                                                                         | — Modification without I ubite Notice                |
| ☑ Update Compliance Plan                                                                                   |                                                      |
| • •                                                                                                        |                                                      |
|                                                                                                            |                                                      |
|                                                                                                            |                                                      |
|                                                                                                            |                                                      |
|                                                                                                            |                                                      |
|                                                                                                            |                                                      |
|                                                                                                            |                                                      |

| EMISSIONS EQ                                                                                                                                                                                                                    | QUIPMENT AT A SYNTHETIC M                                                                                                                                                                                                                  | INOR SOURCE                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| <b>Facility (Agency Interest</b>                                                                                                                                                                                                | ) Information                                                                                                                                                                                                                              | Section OPGP - A                           |
| 6. Equipment List (Chec.                                                                                                                                                                                                        | k all that apply)                                                                                                                                                                                                                          |                                            |
| Complete supporting emission                                                                                                                                                                                                    | n calculations must be included for each potential                                                                                                                                                                                         | emission unit selected below.              |
| <ul> <li>✓ Heater Treater. Include a</li> <li>✓ Condensation Storage V</li> <li>✓ Water Storage Vessel. In</li> <li>✓ Internal Combustion Eng</li> <li>✓ Flare. Include a complet</li> <li>✓ Oil Truck Loading (Sect</li> </ul> | a completed Section OPGP-C Form for each unit<br>essel. Include a completed Section OPGP-E Form<br>actude a completed Section OPGP-E Form for ea<br>gine. Include a completed Section OPGP-D Form<br>ed Section OPGP-F Form for each unit. | t.<br><u>m</u> for each unit.<br>ach unit. |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |                                            |
| 7. Process/Product Detai                                                                                                                                                                                                        | ls                                                                                                                                                                                                                                         |                                            |
| Ma                                                                                                                                                                                                                              | ximum Anticipated Well(s) Production for Facil                                                                                                                                                                                             | tiy:                                       |
| Produced Material                                                                                                                                                                                                               | Throughput                                                                                                                                                                                                                                 | Units                                      |
| Gas                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                        | MMCF/day                                   |
| Oil                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                        | barrels/day                                |
| Water                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                         | barrels/day                                |
| Other (Specify)                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |                                            |
| Maximum An                                                                                                                                                                                                                      | ticipated Throughput for Principal Product(s) (a                                                                                                                                                                                           | s applicable ):                            |
| Produced Material                                                                                                                                                                                                               | Throughput                                                                                                                                                                                                                                 | Units                                      |
| Flared Gas                                                                                                                                                                                                                      | 750                                                                                                                                                                                                                                        | MMCF/day                                   |
| Oil                                                                                                                                                                                                                             | 350                                                                                                                                                                                                                                        | barrels/day                                |
| Water                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                         | barrels/day                                |
| Other (Specify)                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |                                            |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                            |                                            |
| 8. Zoning                                                                                                                                                                                                                       |                                                                                                                                                                                                                                            |                                            |
| A. Is the facility (either exist county zoning ordinance Yes                                                                                                                                                                    | sting or proposed) located in accordance with an es? If no, please explain                                                                                                                                                                 | y applicable city and/or                   |
|                                                                                                                                                                                                                                 | sting or proposed) required to obtain any zoning y at this site? If yes, please explain.                                                                                                                                                   | variance to                                |
| C. Is the required USGS qu                                                                                                                                                                                                      | adrangle map or equivalent attached?                                                                                                                                                                                                       | ☑ Yes □ No                                 |

Facility (Agency Interest) Information

Section OPGP - A

9. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

| ). Address aı | nd Locat  | ion of Facility Records     | · · · · · · · · · · · · · · · · · · · |              |
|---------------|-----------|-----------------------------|---------------------------------------|--------------|
| Physical Ad   | dress     |                             |                                       |              |
| 1. Street Ad  | dress:    | 140 Mayfair Road, Suite 900 |                                       |              |
| 2. City:      | Hattiesbu | ırg                         | 3. State:                             | MS           |
| 4. County:    | Forrest   |                             | 5. Zip Code:                          | 39402        |
| 6. Telephone  | e No.:    | 601-518-0624                | 7. Fax No.:                           | 601-450-4448 |

| EMISSIONS EQUIPMENT AT A SYNTHETIC MI  | NOR SOURCE       |
|----------------------------------------|------------------|
| Facility (Agency Interest) Information | Section OPGP - A |

#### 11. Certification

The Form must be signed by a Responsible Official as defined in 11 Miss. Admin. Code Pt. 2, R. 2.1.C.(24).

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

| Signature of Responsible Official/DAR | 3/3/2025<br>Date |
|---------------------------------------|------------------|
| Adam Barham                           | 3/3/2025         |
| Printed Name                          | Date             |

#### Section B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section B.3 and GHGs in Section B.4. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

| Emission | TSP <sup>1</sup> | (PM)   | PM    | -10 <sup>1</sup> | PM-   | ·2.5¹  | S     | 02     | N     | Ox     | С     | 0      | V      | C       | TI    | S <sup>2</sup> | Le    | ad     | Total   | HAPs    |
|----------|------------------|--------|-------|------------------|-------|--------|-------|--------|-------|--------|-------|--------|--------|---------|-------|----------------|-------|--------|---------|---------|
| Point ID | lb/hr            | ton/yr | lb/hr | ten/yr           | lb/br | ton/yr | lb/br | ton/yr | lb/br | ton/yr | lb/hr | ton/yr | lb/br  | ton/yr  | lb/hr | ton/yr         | lb/hr | ton/yr | lb/hr   | ton/yr  |
| AA-001   | 0.00             | 0.00   | 0.00  | 0.00             | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0.00   | 467.72 | 2048.61 | 0.00  | 0.00           | 0.00  | 0.00   | 35.4445 | ####### |
| AA-001a  | 0.00             | 0.00   | 0.00  | 0.00             | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0.02   | 0.00  | 0.00   | 0.00   | 0.00    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0001  | 0.0004  |
| AA-002   | 0.01             | 0.05   | 0.02  | 0.10             | 0.02  | 0.10   | 0.00  | 0.00   | 2.70  | 11.83  | 4.55  | 19.91  | 0.04   | 0.19    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0396  | 0.1735  |
| AA-002a  | 0.02             | 0.07   | 0.03  | 0.14             | 0.03  | 0.14   | 0.00  | 0.00   | 3.52  | 15.41  | 5.92  | 25.94  | 0.05   | 0.21    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0516  | 0.2261  |
| AA-003   | 0.00             | 0.00   | 0.00  | 0.00             | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0.00   | 0.07   | 0.30    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0031  | 0.0136  |
| AA-004   | Routed to        | AA-001 |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
| AA-005   | Routed to        | AA-001 |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
| AA-006   | Routed to        | AA-001 |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
| AA-006a  | 0.00             | 0.00   | 0.00  | 0.02             | 0.00  | 0.02   | 0.00  | 0.00   | 0.05  | 0.21   | 0.04  | 0.18   | 0.00   | 0.01    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0009  | 0.0041  |
| AA-007   | 0.00             | 0.00   | 0.00  | 0.00             | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0.00   | 0.00  | 0,00   | 0.00   | 0.02    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0043  | 0.0190  |
| AA-008   | Routed to        | AA-001 |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
| AA-009   | 0.00             | 0.00   | 0.00  | 0.00             | 0.00  | 0.00   | 0.00  | 0,00   | 0.00  | 0.00   | 0.00  | 0.00   | 117.72 | 12.07   | 0.00  | 0.00           | 0.00  | 0.00   | 5.2676  | 0.5399  |
| AA-010   | 0.00             | 0.00   | 0.00  | 0.01             | 0.00  | 0.01   | 0.00  | 0.00   | 0.01  | 0.11   | 0.01  | 0.09   | 0.00   | 0.01    | 0.00  | 0.00           | 0.00  | 0.00   | 0.0005  | 0.0020  |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         | $\Box$  |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       | i      |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
|          |                  |        |       |                  |       |        |       |        |       |        |       |        |        |         |       |                |       |        |         |         |
| Totals   | 0.03             | 0.12   | 0.06  | 0.26             | 0.06  | 0.26   | 0.00  | 0.01   | 6.28  | 27.58  | 10.52 | 46.12  | 585.61 | 2061.41 | 0.00  | 0.00           | 0.00  | 0.00   | 40.81   | 156.23  |

<sup>1</sup> Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

<sup>&</sup>lt;sup>2</sup> TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H<sub>2</sub>S), methyl mercaptan (CH<sub>4</sub>S), dimethyl sulfide (C<sub>2</sub>H<sub>6</sub>S), and dimethyl disulfide (C<sub>2</sub>H<sub>6</sub>S<sub>2</sub>).

#### Section B.2: Proposed Allowable Emissions

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

| be added if | there are n  | egulated p      | ollutants ( | other thar       | ı НАРs ал | d GHGs)          | emitted at | the facili | y.    |           |       |              |        |        |       |          |       |                                                  |
|-------------|--------------|-----------------|-------------|------------------|-----------|------------------|------------|------------|-------|-----------|-------|--------------|--------|--------|-------|----------|-------|--------------------------------------------------|
| Emission    | TS           | SP <sup>I</sup> | PM          | [10 <sup>1</sup> | PM        | 2.5 <sup>1</sup> | S          | 02         | N     | Ox        | C     | 0            | V      | C      | T     | RS       | L     | ead                                              |
| Point ID    | lb/hr        | ton/yr          | lb/hr       | ton/yr           | lb/hr     | ton/yr           | lb/br      | ton/yr     | lb/hr | ton/yr    | lb/hr | ton/yr       | lb/hr  | ton/yr | lb/br | ton/yr   | lb/br | ton/yr                                           |
| AA-001      | 0.06         | 0.27            | 0.25        | 1.08             | 0.25      | 1.08             | 0.000      | 0.00       | 2.24  | 9.83      | 10.23 | 44.80        | 9.35   | 40.97  | 0.00  | 0.00     | 0.00  | 0.00                                             |
| AA-001a     | 0.00         | 0.00            | 0.00        | 0.00             | 0.00      | 0.00             | 0.000      | 0.00       | 0.00  | 0.02      | 0.00  | 0.02         | 0.00   | 0.00   | 0.00  | 0.00     | 0.00  | 0.00                                             |
| AA-002      | 0.01         | 0.05            | 0.02        | 0.104            | 0.02      | 0.104            | 0.001      | 0.004      | 2.70  | 11.83     | 4.55  | 19.91        | 0.04   | 0.19   | 0.00  | 0.00     | 0.00  | 0.00                                             |
| AA-002a     | 0.02         | 0.07            | 0.03        | 0.135            | 0.03      | 0.135            | 0.00       | 0.004      | 3.52  | 15.41     | 5.92  | 25.94        | 0.05   | 0.21   | 0.00  | 0.00     | 0.00  | 0.00                                             |
| AA-003      | 0.00         | 0,00            | 0,00        | 0.00             | 0.00      | 0.00             | 0.00       | 0.00       | 0.00  | 0.00      | 0.00  | 0.00         | 0.06   | 0.28   | 0.00  | 0.00     | 0.00  | 0.00                                             |
| AA-004      | Routed to    | AA-001          |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
| AA-005      | Routed to    | AA-001          |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
| AA-006      | Routed to    | AA-001          |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
| AA-006a     | 0.00         | 0.00            | 0.00        | 0.02             | 0.00      | 0.02             | 0.00       | 0.00       | 0.05  | 0.21      | 0.04  | 0.18         | 0.00   | 0.01   | 0.00  | 0.00     | 0.00  | 0.00                                             |
| AA-007      | 0.00         | 0.00            | 0.00        | 0.00             | 0.00      | 0.00             | 0.00       | 0.00       | 0.00  | 0.00      | 0.00  | 0.00         | 0.00   | 0.02   | 0,00  | 0.00     | 0.00  | 0.00                                             |
| AA-008      | Routed to    | AA-001          |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
| AA-009      | 0.00         | 0.00            | 0.00        | 0.00             | 0.00      | 0.00             | 0.00       | 0.00       | 0.00  | 0.00      | 0.00  | 0.00         | 117.72 | 12.07  | 0,00  | 0.00     | 0.00  | 0.00                                             |
| AA-010      | 0.00         | 0.00            | 0.00        | 0.01             | 0.00      | 0.01             | 0.00       | 0.00       | 0.02  | 0.11      | 0.02  | 0.09         | 0.00   | 0.01   | 0.00  | 0.00     | 0.00  | 0.00                                             |
|             |              |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
|             |              |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
|             |              |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
|             |              |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       | <b>†</b>                                         |
|             |              |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
|             | i –          |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       |                                                  |
|             | <u> </u>     |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       |          |       | <u> </u>                                         |
|             | <del> </del> | 1               |             |                  |           |                  |            |            |       | <b></b> - |       |              |        |        |       |          |       | <del>                                     </del> |
|             | <del> </del> |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       | -        | -     | <del>                                     </del> |
|             | <del> </del> |                 |             |                  |           |                  |            |            |       |           |       |              |        |        |       | $\vdash$ |       | $\vdash$                                         |
| Totals      | 0.09         | 0.39            | 0.31        | 1.34             | 0.31      | 1.34             | 0.00       | 0.01       | 8,54  | 37.41     | 20.76 | 95.00        | 127.24 | 53.75  | 0.00  | 0.00     | 0.00  | 0.00                                             |
| T OFFETS    | .0.02        | 1 0.37          | 0.51        | 1.54             | U.J.      | 1.34             | 0,00       | 0.01       | 0,54  | 31,71     | 20.10 | <b>93.00</b> |        | 23.13  | V.00  | 9.00     | V.VV  | 1 0.00                                           |

<sup>&</sup>lt;sup>1</sup> Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

<sup>&</sup>lt;sup>2</sup> TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H<sub>2</sub>S), methyl mercaptan (CH<sub>4</sub>S), dimethyl sulfide (C<sub>2</sub>H<sub>6</sub>S), and dimethyl disulfide (C<sub>2</sub>H<sub>6</sub>S<sub>2</sub>).

#### Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

| Emission | Total     | HAPs                                             | 1,1,<br>tetrachio | 2,2 -<br>roethane | 1,1,2-trich | loroethane | 1,3-bu  | tadiene  | 1,3-dichlo                                       | ropropene | acctalo            | dehyde  | acro    | olein   | ben          | zene     | carbon to | trachloride |
|----------|-----------|--------------------------------------------------|-------------------|-------------------|-------------|------------|---------|----------|--------------------------------------------------|-----------|--------------------|---------|---------|---------|--------------|----------|-----------|-------------|
| Point ID | lb/hr     | ton/yr                                           | lb/hr             | ton/yr            | lb/br       | ton/yr     | lb/br   | ton/yr   | lb/br                                            | ton/yr    | lb/hr              | ton/yr  | lb/hr   | ton/yr  | lb/br        | ton/yr   | lb/hr     | ton/yr      |
| AA-001   | 0.8806    | 3.1049                                           | <0.0001           | <0.0001           | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <0.0001            | <0.0001 | <0.0001 | <0.0001 | 0.0185       | 0.0811   | <0.0001   | <0.0001     |
| AA-001a  | 0.0001    | 0.0004                                           | <0.0001           | <0.0001           | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <0.0001            | <0.0001 | <0.0001 | <0.0001 | <0.0001      | <0.0001  | <0.0001   | <0.0001     |
| AA-002   | 0.0396    | 0.1735                                           | <0.0001           | 0.0001            | <0.0001     | 0.0001     | 0.0008  | 0.0035   | <0.0001                                          | 0.0001    | 0.0034             | 0.0149  | 0.0032  | 0.0141  | 0.0019       | 0.0085   | <0.0001   | 0.0001      |
| AA-002a  | 0.0516    | 0.2261                                           | <0.0001           | 0.0002            | <0.0001     | 0.0001     | 0.0011  | 0.0046   | <0.0001                                          | 0.0001    | 0,0044             | 0.0195  | 0.0042  | 0.0183  | 0.0025       | 0.0110   | <0.0001   | 0,0001      |
| AA-003   | 0.0036    | 0.0136                                           | <0.0001           | <0.0001           | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <0.0001            | <0.0001 | <0.0001 | <0.0001 | 0.0005       | 0.0022   | <0.0001   | <0.0001     |
| AA-004   | Routed to | AA-001                                           |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         |              |          |           |             |
| AA-005   | Routed to | AA-001                                           |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         |              |          |           |             |
| AA-006   | Routed to | AA-001                                           |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         |              |          |           |             |
| AA-006a  | 0.0009    | 0.0041                                           | <0.0001           | <0.0001           | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <0.0001            | <0.0001 | <0.0001 | <0.0001 | <0.0001      | <0.0001  | <0.0001   | <0.0001     |
| AA-007   | 0.0043    | 0.0190                                           | <b>⊲</b> 0.0001   | <b>⊲0.0001</b>    | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <b>&lt;</b> 0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001      | <0.0001  | <0.0001   | <0.0001     |
| AA-008   | Routed to | AA-001                                           |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         |              |          |           |             |
| AA-009   | 5.2676    | 0.5399                                           | <0.0001           | <0.0001           | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <0.0001            | <0.0001 | <0.0001 | <0.0001 | 0.5648       | 0.0579   | <0.0001   | <0.0001     |
| AA-010   | 0.00047   | 0.00205                                          | <0.0001           | <0.0001           | <0.0001     | <0.0001    | <0.0001 | <0.0001  | <0.0001                                          | <0.0001   | <0.0001            | <0.0001 | <0.0001 | <0.0001 | <0.0001      | <0.0001  | <0.0001   | <0.0001     |
|          |           |                                                  |                   |                   |             |            |         | l        |                                                  |           |                    |         |         |         |              |          |           |             |
|          |           |                                                  |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         | <b>-</b>     |          |           |             |
|          |           | <del></del>                                      |                   | <del></del>       |             |            | <b></b> |          | <del>                                     </del> | <b>-</b>  |                    |         |         |         | <del> </del> |          |           |             |
|          | <b></b>   |                                                  |                   |                   |             |            |         |          | <del> </del>                                     |           |                    |         |         |         | <del> </del> |          |           |             |
|          | <u> </u>  |                                                  |                   |                   |             |            |         |          | <u> </u>                                         |           |                    |         |         |         |              |          |           |             |
|          |           |                                                  |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         |              | <u> </u> |           |             |
|          |           | 1                                                |                   |                   |             |            |         | l        |                                                  |           |                    |         |         |         |              |          |           |             |
|          |           |                                                  |                   |                   |             |            |         |          |                                                  |           |                    |         |         |         |              |          |           |             |
|          | <u> </u>  | <del></del>                                      |                   |                   |             |            |         | <u> </u> | <b>†</b>                                         |           | <u> </u>           |         |         |         |              |          |           | i           |
|          |           | <del>                                     </del> |                   |                   | -           |            |         |          | <del> </del>                                     | -         |                    |         |         |         |              | ·        |           |             |
| Totals:  | 6.2489    | 4.0836                                           | 0.0000            | 0.0003            | 0.0000      | 0.0002     | 0.0019  | 0.0082   | 0.0000                                           | 0.0002    | 0.0079             | 0.0344  | 0.0074  | 0.0324  | 0.5883       | 0.1607   | 0.0000    | 0.0002      |

#### Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

| Emission     | Total     | HAPs     | chlorot | enzene  | chion    | oform   | ethylbo | nzene   | ethylene ( | dibromide   | formal   | dehyde   | metl    | lonze    | methylen | e chloride | naphi        | halene       |
|--------------|-----------|----------|---------|---------|----------|---------|---------|---------|------------|-------------|----------|----------|---------|----------|----------|------------|--------------|--------------|
| Point ID     | lb/hr     | ton/yr   | lb/hr   | ton/yr  | lb/hr    | ton/yr  | lb/hr   | ton/yr  | ib/br      | ton/yr      | lb/hr    | ton/yr   | lb/hr   | ton/yr   | lb/hr    | ton/yr     | lb/br        | ton/yr       |
| AA-001       | 0.1414    | 3.1049   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | 0.0014  | 0.0061  | <0.0001    | <0.0001     | <0.0001  | <0.0001  | <0.0001 | <0.0001  | <0.0001  | <0.0001    | <0.0001      | <0.0001      |
| AA-001a      | 0.0001    | 0.0004   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | <0.0001 | <0.0001 | <0.0001    | <0.0001     | <0.0001  | <0.0001  | <0.0001 | <0.0001  | <0.0001  | <0.0001    | <0.0001      | <0.0001      |
| AA-002       | 0.0396    | 0.1735   | <0.0001 | 0.0001  | <0.0001  | 0.0001  | <0.0001 | 0.0001  | <0.0001    | 0.0001      | 0.0250   | 0.1097   | 0.0037  | 0.0164   | 0.0001   | 0.0002     | 0.0001       | 0.0005       |
| AA-002a      | 0.0227    | 0.2261   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | <0.0001 | 0.0002  | <0.0001    | 0.0001      | 0.0326   | 0.1430   | 0.0049  | 0,0213   | <0.0001  | 0.0003     | 0.0002       | 0.0007       |
| AA-003       | 0.0031    | 0.0136   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | <0.0001 | 0.0002  | <0.0001    | <0.0001     | <0.0001  | <0.0001  | <0.0001 | <0.0001  | <0.0001  | <0.0001    | <0.0001      | <0.0001      |
| AA-004       | Routed to | AA-001   |         |         |          |         |         |         |            |             |          |          |         |          |          |            | <0.0001      | <0.0001      |
| AA-005       | Routed to | AA-001   |         |         |          |         |         |         |            |             |          |          |         |          |          |            | <0.0001      | <0.0001      |
| AA-006       | Routed to | AA-001   |         |         |          |         |         |         |            |             |          |          |         |          |          |            | <0.0001      | <0.0001      |
| AA-006a      | 0.0009    | 0.0041   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | <0.0001 | <0.0001 | <0.0001    | <0.0001     | <0.0001  | 0.0002   | <0.0001 | <0.0001  | <0.0001  | <0.0001    | <0.0001      | <0.0001      |
| AA-007       | 0.0043    | 0.0190   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | <0.0001 | <0.0001 | <0.0001    | <0.0001     | <0.0001  | <0.0001  | <0.0001 | <0.0001  | <0.0001  | <0.0001    | <0.0001      | <0.0001      |
| AA-008       | Routed to | AA-001   |         |         |          |         |         |         |            |             |          |          |         |          |          |            | <0.0001      | <0.0001      |
| AA-009       | 5.2676    | 0.5399   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | 0.0216  | 0.0022  | <0.0001    | <0.0001     | <0.0001  | <0.0001  | <0.0001 | <0.0001  | <0.0001  | <0,0001    | <0.0001      | <0.0001      |
| AA-010       | 0.0005    | 0.0020   | <0.0001 | <0.0001 | <0.0001  | <0.0001 | <0.0001 | <0.0001 | <0.0001    | <0.0001     | <0.0001  | 0.0001   | <0.0001 | <0.0001  | <0.0001  | <0.0001    | <0.0001      | <0.0001      |
|              |           |          |         |         |          |         |         |         |            |             |          |          |         |          |          |            |              |              |
|              | 1         |          |         |         |          |         |         |         |            |             |          |          |         |          |          |            |              |              |
|              |           | <u> </u> |         |         |          |         |         |         | <b>—</b>   |             |          |          |         | <b>-</b> |          |            |              | <del> </del> |
|              |           |          |         |         |          |         |         |         |            | <del></del> |          |          |         |          | -        |            | <del> </del> |              |
|              |           |          |         |         | <b>—</b> |         |         |         | -          | -           | $\vdash$ |          |         |          |          |            | <u> </u>     | -            |
|              | <u> </u>  |          | -       |         | <u> </u> |         |         |         |            |             |          | <u> </u> |         |          |          |            |              | <del> </del> |
|              | L         |          | ļ       |         |          |         |         |         |            |             |          |          |         |          |          |            |              | <u> </u>     |
| <del> </del> |           |          |         |         |          |         |         |         |            |             |          |          |         |          |          |            |              |              |
|              |           |          |         |         |          |         |         |         |            |             |          |          |         |          |          |            |              |              |
|              |           |          |         |         |          |         |         |         |            |             |          |          |         |          |          |            |              |              |
| Totals:      | 5.4802    | 4.0836   | 0.0000  | 0.0001  | 0.0000   | 0.0001  | 0.0230  | 0.0088  | 0.0000     | 0.0003      | 0.0577   | 0.2529   | 0.0086  | 0.0377   | 0.0001   | 0.0005     | 0.0003       | 0.0012       |

#### Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or the pollutant is emitted in a quantity less than the threshold amounts described above. Additional columns may be added as necessary to address each HAP.

| Emission | Total     | HAPs    | Ρ/       | VH.     | styr           | ene     | tolu    | ene     | vinyl c | hloride | xy:l    | lene    | bes     | anc     | PC      | M       |       |              |
|----------|-----------|---------|----------|---------|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|--------------|
| Point ID | lb/hr     | ton/yr  | lb/hr    | ton/yr  | lb/hr          | ton/yr  | lb/hr   | ton/yr  | lb/hr   | ton/yr  | lb/hr   | ton/yr  | lb/hr   | ton/yr  | lb/br   | ton/yr  | lb/hr | ton/yr       |
| AA-001   | 0.1414    | 3.1049  | <0.0001  | <0.0001 | <0.0001        | <0.0001 | 0.0151  | 0.0661  | <0.0001 | <0.0001 | 0.0080  | 0.0352  | 0.6659  | 2.9165  | <0.0001 | <0.0001 |       |              |
| AA-001a  | 0.0001    | 0.0004  | < 0.0001 | <0.0001 | <0.0001        | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0001  | 0.0004  | <0.0001 | <0.0001 |       |              |
| AA-002   | 0.0396    | 0.1735  | 0.0002   | 0.0008  | <0.0001        | 0.0001  | 0.0007  | 0.0030  | <0.0001 | <0.0001 | 0.0002  | 0.0010  | <0.0001 | <0.0001 | <0.0001 | <0.0001 |       |              |
| AA-002a  | 0.0227    | 0.2261  | 0.0002   | 0.0010  | <0.0001        | <0.0001 | 0.0009  | 0.0039  | <0.0001 | <0.0001 | 0.0003  | 0.0014  | <0.0001 | <0.0001 | <0.0001 | <0.0001 |       |              |
| AA-003   | 0.0031    | 0.0136  | <0.0001  | <0.0001 | <0.0001        | <0.0001 | 0.0004  | 0.0017  | <0.0001 | <0.0001 | 0.0002  | 0.0009  | 0.0206  | 0.0902  | <0.0001 | <0.0001 |       |              |
| AA-004   | Routed to | AA-001  |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
| AA-005   | Routed to | AA-001  |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
| AA-006   | Routed to | AA-001  |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
| AA-006a  | 0.0009    | 0.0041  | <0.0001  | <0.0001 | <0.0001        | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0009  | 0.0039  | <0.0001 | 0.0001  |       |              |
| AA-007   | 0.0043    | 0.0190  | <0.0001  | <0.0001 | <0.0001        | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |       |              |
| AA-008   | Routed to | AA-001  |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
| AA-009   | <0.0001   | 0.5399  | <0.0001  | <0.0001 | <b>40.0001</b> | <0.0001 | 0.5593  | 0.0573  | <0.0001 | <0.0001 | 0.2946  | 0.0302  | 3.8273  | 0.3923  | <0.0001 | <0.0001 |       |              |
| AA-010   | 0.00047   | 0.00205 | <0.0001  | <0.0001 | <0.0001        | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.00044 | 0.00193 | <0.0001 | <0.0001 |       |              |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
|          |           |         |          |         |                |         |         |         |         |         | _       |         |         |         |         |         |       | $\vdash$     |
|          | -         |         |          |         |                |         |         |         |         |         |         | _       |         |         |         |         |       | <del> </del> |
|          |           |         |          | -       |                |         |         |         |         |         | _       |         |         |         |         |         |       | <b>├</b> ──  |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       | <u> </u>     |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
|          |           |         |          |         |                |         |         |         |         |         |         |         |         |         |         |         |       |              |
| Totals:  | 0.2126    | 4.0836  | 0.0004   | 0.0017  | 0.0000         | 0.0001  | 0.5763  | 0.1320  | 0.0000  | 0.0000  | 0.3034  | 0.0687  | 4.5152  | 3.4052  | 0.0000  | 0.0001  |       |              |

#### Section B.4: Greenhouse Gas Emissions

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the

|                      |                   | CO <sub>2</sub> (non-<br>biogenic)<br>ton/yr | CO <sub>2</sub><br>(biogenic) <sup>2</sup><br>ton/yr | N₂O<br>ton/yr | CH <sub>4</sub><br>ton/yr | SF <sub>6</sub><br>ton/yr | PFC/HFC <sup>3</sup><br>ton/yr |     |          |              |              | Total GHG<br>Mass Basis<br>ton/yr <sup>5</sup> | Total CO <sub>2</sub> e<br>ton/yr <sup>6</sup> |
|----------------------|-------------------|----------------------------------------------|------------------------------------------------------|---------------|---------------------------|---------------------------|--------------------------------|-----|----------|--------------|--------------|------------------------------------------------|------------------------------------------------|
| Emission<br>Point ID | GWPs 1            | 1                                            | 1                                                    | 298           | 25                        | 22,800                    | footnote 4                     |     |          |              |              |                                                |                                                |
| AA-001               | mass GHG          | 18426.95                                     | 0                                                    | 0.03          | 62.49                     | 0                         | 0                              |     |          |              |              | 18489.47                                       | N/A                                            |
| AA-001               | CO2e              | 18426.95                                     | 0                                                    | 8.93          | 1562.19                   | 0                         | 0                              |     |          |              | 1            | N/A                                            | 19998.07                                       |
| AA-001a              | mass GHG          | 25.59                                        | 0                                                    | 0.00          | 0.00                      | 0                         | 0                              |     |          |              |              | 25.59                                          | N/A                                            |
| AA-0018              | CO2e              | 25.59                                        | 0                                                    | 0.01          | 0.01                      | 0                         | 0                              |     |          |              |              | N/A                                            | 25.62                                          |
| AA-002               | mass GHG          | 624.23                                       | 0                                                    | 0.00          | 0.01                      | 0                         | 0                              |     |          |              |              | 624.24                                         | N/A                                            |
| AA-002               | CO2e              | 624.23                                       | 0                                                    | 0.35          | 0.29                      | 0                         | 0                              |     |          |              |              | N/A                                            | 624.88                                         |
| AA-002a              | mass GHG          | 813.39                                       | 0                                                    | 0.00          | 0.02                      | 0                         | 0                              |     |          |              |              | 813.41                                         | N/A                                            |
| AA-0028              | CO2e              | 813.39                                       | 0                                                    | 0.46          | 0.38                      | 0                         | 0                              |     |          |              |              | N/A                                            | 814.23                                         |
| AA-003               | mass GHG          | 0.04                                         | 0                                                    | 0.00          | 0.27                      | 0                         | 0                              |     |          |              |              | 0.32                                           | N/A                                            |
| AA-003               | CO2e              | 0.04                                         | 0                                                    | 0.00          | 6.81                      | 0                         | 0                              |     |          |              |              | N/A                                            | 6.85                                           |
| AA-004               | mass GHG          | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | 0.00                                           | N/A                                            |
| AA-004               | CO2e              | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | N/A                                            | 0.00                                           |
| AA-005               | mass GHG          | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | 0.00                                           | N/A                                            |
| AA-005               | CO2e              | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | N/A                                            | 0.00                                           |
| AA-006               | mass GHG          | 0                                            | 0                                                    | 0             | 0                         | Ó                         | 0                              |     |          |              |              | 0.00                                           | N/A                                            |
| AA-000               | CO <sub>2</sub> e | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | N/A                                            | 0.00                                           |
| A A .00C-            | mass GHG          | 255.45                                       | 0                                                    | 0.00          | 0.00                      | 0                         | 0                              |     |          |              |              | 255.46                                         | N/A                                            |
| AA-006a              | COze              | 255.45                                       | 0                                                    | 0.14          | 0.12                      | .0                        | 0                              |     |          | 1            |              | N/A                                            | 255.71                                         |
| 4 4 400              | mass GHG          | 0                                            | 0                                                    | 0             | 0                         | Ö                         | O .                            |     |          |              |              | 0.00                                           | N/A                                            |
| AA-007               | CO <sub>2</sub> e | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | N/A                                            | 0.00                                           |
| 1 1 000              | mass GHG          | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          | 1            | 1            | 0.00                                           | N/A                                            |
| AA-008               | COze              | 0                                            | 0                                                    | 0             | 0                         | 0                         | 0                              |     |          |              |              | N/A                                            | 0.00                                           |
| 4.4.000              | mass GHG          | 0.03                                         | 0                                                    | 0             | 0.18                      | 0                         | 0                              |     |          |              |              | 0.21                                           | N/A                                            |
| AA-009               | CO <sub>2</sub> e | 0.03                                         | 0                                                    | 0             | 4.50                      | 0                         | 0                              |     |          |              |              | N/A                                            | 4.53                                           |
| 4 4 040              | mass GHG          | 127.73                                       | 0                                                    | 0.00          | 0.00                      | 0                         | . 0                            |     |          |              | 1 1          | 127.73                                         | N/A                                            |
| AA-010               | COze              | 127.73                                       | 0                                                    | 0.07          | 0,06                      | 0                         | 0                              |     |          |              | 1 1          | N/A                                            | 127.86                                         |
| FACILITY             | mass GHG          | 20145.70                                     | 0                                                    | 0.49          | 63.34                     | 0.00                      | 0.00                           | i   |          | i i          | 1 i          | 20209.53                                       | N/A                                            |
| TOTAL                | CO <sub>2</sub> e | 20145.70                                     | 0                                                    | 145,67        | 1583.51                   | 0.00                      | 0.00                           | 0.5 | <b>—</b> | <del> </del> | <del> </del> | N/A                                            | 21874.88                                       |

<sup>1</sup> GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

<sup>&</sup>lt;sup>2</sup> Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or

micro-organisms.

For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

<sup>&</sup>lt;sup>4</sup> For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

<sup>&</sup>lt;sup>5</sup> Greenhouse gas emissions on a mass basis is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO<sub>2</sub> in this total.

<sup>6</sup> CO<sub>2</sub>e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO<sub>2</sub>e in this total.

#### Section B.5: Stack Parameters and Exit Conditions

Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

| Emission<br>Point ID | Horizontal         |             | Height Above<br>Ground | Base Elevation | Exit Temp. | Inside Diameter<br>or Dimensions | Velocity | Moisture by<br>Volume | Geographic Position<br>(degrees/minutes/seconds) |              |
|----------------------|--------------------|-------------|------------------------|----------------|------------|----------------------------------|----------|-----------------------|--------------------------------------------------|--------------|
| rount 1D             | V=Vertical)        | (Yes or No) | (ft)                   | (ft)           | (°F)       | (ft)                             | (ft/sec) | (%)                   | Latitude                                         | Longitude    |
| AA-001               | Н                  | No          | 40                     | 415            | 1800       | 0.50                             | 100      | TBD                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-002               | Н                  | Yes         | 7                      | 415            | TBD        | TBD                              | TBD      | TBD                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-002a              | Н                  | yes         | 7                      | 415            | TBD        | TBD                              | TBD      | TBD                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-003               | N/A-Fugitives      | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-004               | N/A-Separator      | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-005               | N/A-Separator      | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-006               | N/A-Heater Treater | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-006a              | TBD                | TBD         | TBD                    | 415            | TBD        | TBD                              | TBD      | TBD                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-007               | N/A-Tanks          | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-008               | N/A-Tanks          | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-009               | N/A-Truck Loading  | N/A         | N/A                    | 415            | N/A        | N/A                              | N/A      | N/A                   | 31/51/7.848N                                     | 89/19/7.464W |
| AA-010               | TBD                | TBD         | TBD                    | 415            | N/A        | TBD                              | TBD      | TBD                   | 31/51/7.848N                                     | 89/19/7.464W |

<sup>&</sup>lt;sup>1</sup> A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

|     |          | <del></del>                                              |                                                                       |                     |                | · · · · · · · · · · · · · · · · · · · |               | <u> </u>      |          |  |  |  |  |  |  |
|-----|----------|----------------------------------------------------------|-----------------------------------------------------------------------|---------------------|----------------|---------------------------------------|---------------|---------------|----------|--|--|--|--|--|--|
| Fue | I Bu     | rning E                                                  | Equipment –                                                           | - Internal C        | Combusti       | ion                                   | Section       | n OPGP-       | n        |  |  |  |  |  |  |
| Eng | gines    | 3                                                        |                                                                       |                     |                |                                       | Section       | n Oi Gi -     | D        |  |  |  |  |  |  |
| 1.  | Em       | ission Po                                                | int Description                                                       | on                  |                |                                       |               |               |          |  |  |  |  |  |  |
|     |          |                                                          |                                                                       |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     | A.       | Emission P                                               | oint Designation (Re                                                  | ef. No.): AA-0      | 02a            |                                       |               |               |          |  |  |  |  |  |  |
|     |          |                                                          | _ ,                                                                   |                     |                |                                       |               |               | _        |  |  |  |  |  |  |
|     | B.       | Equipment                                                | Description (includ                                                   | ing serial number)  | : 215 HP RIC   | CE for sales gas                      | s compresso   | r             |          |  |  |  |  |  |  |
|     |          |                                                          |                                                                       |                     |                |                                       |               |               | _        |  |  |  |  |  |  |
|     | C.       | Manufactur                                               | Manufacturer: Caterpillar  D. Date of Manufacture 2011 and Model No.: |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     |          | and Model No.:                                           |                                                                       |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     | E.       | Maximum Heat Input (higher heating value): 1.59 MMBtu/hr |                                                                       |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     |          |                                                          |                                                                       |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     | F.       | Rated Power                                              | er: 215                                                               | hp                  | 162            | kW                                    |               |               |          |  |  |  |  |  |  |
|     |          |                                                          |                                                                       |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     | G.       | Is the engin                                             | e an EPA-certified                                                    | engine?             | No             | Yes or No                             |               |               |          |  |  |  |  |  |  |
|     |          | T.T                                                      | N                                                                     |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     | H.       | Use:                                                     | Non-emerger                                                           | icy                 | ∐ Emei         | rgency                                |               |               |          |  |  |  |  |  |  |
|     | I.       | Displaceme                                               | ent per cylinder:                                                     |                     | , $\sqcap$     | 10 to <30 Lite                        | rs 🗆          | ≥ 30 Liters   |          |  |  |  |  |  |  |
|     | ••       | Displaceme                                               | nic per cylinder.                                                     | Z TO Ditor.         | , L            | TO TO SO DITO                         |               | j _ 50 Liters |          |  |  |  |  |  |  |
|     | J.       | Engine Igni                                              | ition Type:                                                           |                     | ion            | ☐ Compres                             | sion Ignition | 1             |          |  |  |  |  |  |  |
|     |          |                                                          | <b>7.</b>                                                             |                     |                |                                       | <b>3</b>      |               |          |  |  |  |  |  |  |
|     | K.       | Engine Bur                                               | n Type:                                                               | 4-stroke            | 2-strok        | e 🛛                                   | Rich Burn     | Lean          | Burn     |  |  |  |  |  |  |
|     |          | (check all ti                                            | hat apply)                                                            |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     |          |                                                          | _                                                                     |                     | _              |                                       |               |               |          |  |  |  |  |  |  |
|     | L.       | Status:                                                  |                                                                       | Operating           | Propose        | ed 📙                                  | Under         |               |          |  |  |  |  |  |  |
|     | M        | Data of com                                              |                                                                       | - <b>4</b> :        | 1:6::          | (f C                                  |               |               |          |  |  |  |  |  |  |
|     | M.       |                                                          | struction, reconstrueurces) or date of anti                           |                     |                | n (for Coi                            | nstruction    |               |          |  |  |  |  |  |  |
|     |          | J                                                        | ,                                                                     | •                   |                |                                       | 3/2025        |               |          |  |  |  |  |  |  |
| 2.  | Fue      | el Type                                                  |                                                                       |                     |                |                                       |               |               |          |  |  |  |  |  |  |
|     | Com      | plete the follo                                          | owing table, identify                                                 | ing each type of fi | uel and the am | ount used. Spe                        | cify units of | measurement.  | •        |  |  |  |  |  |  |
|     | FU       | EL TYPE                                                  | HEAT                                                                  | % SULFUR            | % ASH          | MAXIMU                                |               | MAXIMUM       | 7        |  |  |  |  |  |  |
|     |          |                                                          | CONTENT                                                               |                     |                | HOURLY US                             | SAGE   YE     | EARLY USAGE   | ,        |  |  |  |  |  |  |
|     |          | Nat.                                                     | 1020 BTU/Ft3                                                          | 0.00004             | 0.0            | 1.59 MC                               | F             | 13.93 MMCF    |          |  |  |  |  |  |  |
|     | Gas      | s/propane                                                |                                                                       |                     | 1              |                                       |               |               | $\dashv$ |  |  |  |  |  |  |
|     |          |                                                          |                                                                       |                     |                |                                       |               |               | $\dashv$ |  |  |  |  |  |  |
|     |          |                                                          |                                                                       |                     |                |                                       |               |               | $\dashv$ |  |  |  |  |  |  |
|     | <u> </u> |                                                          |                                                                       |                     | 1 .            | I                                     |               |               |          |  |  |  |  |  |  |

#### **Compliance Plan Section OPGP-G**

Part 1. Equipment List

List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site.

| EMISSION<br>UNIT (Ref No.)           | FEDERAL or STATE REGULATION  Ex. 40 CFR Part, Subpart  Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2). | CONSTRUCTION DATE        | STARTUP<br>DATE | REMOVAL<br>DATE |
|--------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|-----------------|-----------------|
| Example:<br>Engines                  | 40 CFR 63, Subpart ZZZZ                                                                             | 10/01/2002               | 11/15/2019      | N/A             |
| Example:<br>Fugitive<br>Emissions    | 40 CFR 60, Subpart OOOOa                                                                            | 10/01/2019               | 11/15/2019      | N/A             |
| Example:<br>Flare                    | 11 Miss. Admin. Code Pt. 2, R.1.4.B(2).                                                             | 12/01/2019               | 12/02/2019      | N/A             |
| This list of exam<br>should be comp  | mples is not intended to be conclusive for each type of emission source. Th<br>oleted.              | is list only provides e. | xamples of ho   | w the table     |
| AA-001 Flare<br>and facility<br>wide | 11 Miss. Admin. Code Pt. 2, R.1.4.B(2).                                                             |                          |                 |                 |
| AA-002                               | 40 CFR 63, Subpart ZZZZ                                                                             |                          |                 |                 |
| AA-002, AA-<br>010                   | 11 Miss. Admin. Code Pt. 2, R.1.3.B.                                                                |                          |                 |                 |
| AA-002, ,AA-<br>006a, AA-010         | 11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a).                                                          |                          |                 |                 |
| AA-003<br>Fugitive<br>Emissions      | 40 CFR 60, Subpart OOOOa                                                                            |                          |                 |                 |

**ATTACHMENT A** 

**Calculations for Venture Stone 9-5 No. 1 Tank Battery** 

3/3/2025 1 of 22

#### **Site Information for Calculations**

Site Name: Stone 9-5 No. 1 Tank Battery

 Potential Crude Production
 78,840 bbl/yr
 bbl/yr

 Potential Gas production
 219,000 mcf/yr

 Potential Produced Water
 3,650 bbl/yr

 Initial Crude Production
 216 bbl/day
 (expected maximum daily production)

 Initial Gas Production
 750 mcf/day
 (expected maximum daily production)

 Initial Water Production
 10 bbl/day
 (expected maximum daily production)

Crude Gravity 49

Oil tank W&B Losses

1.31 SCF/stock tank bbl (estimated using E&P Tanks)
Oil tank Flash Gas

1.887 SCF/stock tank bbl (estimated using E&P Tanks)
Water tank W&B Losses

0.0131 SCF/stock tank bbl (using 1% of oil tank emissions)
Water tankFlash Gas

0.1887 SCF/stock tank bbl (using 1% of oil tank emissions)

VRU recovery efficiency 0.00% Flare destruction efficiency 98.00%

3/3/2025 2 of 22

#### **Emission Point Summary**

| Emission Point<br>Number | Emission Point<br>Description       | Design<br>Capacity | Units    | Operating<br>Hours |  |
|--------------------------|-------------------------------------|--------------------|----------|--------------------|--|
| AA-001                   | Flare                               | 10.25              | MMBtu/hr | 8760               |  |
| AA-001a                  | Flare Pilot                         | 0.05               | MMBtu/hr | 8760               |  |
| AA-002                   | Power Oil Pump Engine               | 165                | hp       | 8760               |  |
| AA-002a                  | Compressor Engine                   | 150                | hp       | 8760               |  |
| AA-003                   | Fugitive emissions- equipment leaks | -                  | -        | 8760               |  |
| AA-004                   | High Pressure Separator -           |                    | -        | 8760               |  |
| AA-005                   | Low Pressure Separator              |                    | -        | 8760               |  |
| AA-006                   | Heater Treater                      |                    | -        | 8760               |  |
| AA-006a                  | Heater Treater (burner)             | 0.5                | mmBtu/hr | 8760               |  |
| AA-007                   | Misc. Chemical Tanks                | . <del>a</del> .i  | -        | 8760               |  |
| AA-008                   | Oil and Water Storage Tanks         |                    | -        | 8760               |  |
| AA-009                   | Truck Loading                       | 16,000             | gal/hr   | As needed          |  |
| AA-010                   | Line Heater                         | 0.25               | mmBtu/hr | 8760               |  |

Note: Storage tanks, separators, and heater treater vent to the flare.

3/3/2025 3 of 22

#### **Proposed Annual Emissions, controlled**

| Emission          | 1-                                     | Annual Emissions, tpy |         |           |         |         |         |         |        | GHG Emissions, tpy |       |      |          |
|-------------------|----------------------------------------|-----------------------|---------|-----------|---------|---------|---------|---------|--------|--------------------|-------|------|----------|
| CURID<br>Funssion | Emission Unit                          | PM                    | PM10    | PNI2.5    | VOC     | NOx     | CO      | SO2     | Total  | 'CO2               | CH4   | N2O  | GO2e     |
| AA-001            | Flare                                  | 0.27                  | 0.27    | 0.27      | 40.97   | 9.83    | 44.80   | 0.00    | 3.1049 | 18426.95           | 62.49 | 0.03 | 19998.07 |
| AA-001a           | Flare Pilot                            | 0.00                  | 0.00    | 0.00      | 0.00    | 0.02    | 0.02    | 0.00    | 0.0004 | 25.59              | 0.00  | 0.00 | 25.62    |
| AA-002            | Power Oil Pump Engine                  | 0.051                 | 0.104   | 0.104     | 0.16    | 11.83   | 19.91   | 0.003   | 0.1735 | 624.23             | 0.03  | 0.00 | 625.26   |
| AA-002a           | Compressor Engine                      | 0.066                 | 0.135   | 0.135     | 0.09    | 6.78    | 25.94   | 0.002   | 0.2261 | 813.39             | 0.01  | 0.00 | 814.14   |
| AA-003            | Fugitive emissions- equipment<br>leaks | -                     | -       | -         | 0.30    | -       | -       |         | 0.0136 | 0.04               | 0.02  | 0.00 | 0.43     |
| AA-004            | High Pressure Separator                |                       | Gas     | routed to | Flare   |         |         | •       | •      |                    |       |      | •        |
| AA-005            | Low Pressure Separator                 |                       | Gas     | routed to | Flare   |         |         |         |        |                    |       |      |          |
| AA-006            | Heater Treater                         |                       | Gas     | routed to | Flare   |         |         |         |        |                    |       |      |          |
| AA-006a           | Heater Treater (burner)                | 0.00408               | 0.01632 | 0.01632   | 0.01181 | 0.21471 | 0.18035 | 0.00129 | 0.0041 | 255.45             | 0.00  | 0.00 | 255.71   |
| AA-007            | Misc. Chemical Tanks (4)               | -                     | -       | -         | 0.02    | -       | -       | -       | 0.0190 |                    |       | -    |          |
| AA-008            | Oil and Water Tanks (4)                |                       | Gas     | routed to | flare   |         |         |         |        |                    |       | •    | •        |
| AA-009            | Truck Loading                          |                       |         |           | 12.07   |         |         |         | 0.5399 | 0.03               | 0.18  | 0    | 4.49     |
| AA-010            | Line Heater                            | 0.00204               | 0.00816 | 0.00816   | 0.01    | 0.10735 | 0.09018 | 0.00064 | 0.0020 | 127.73             | 0.00  | 0.00 | 127.86   |
|                   | Totals                                 | (0:39                 | 0.53    | 0,53      | 53.62   | 28,67   | 80.84   | 0,01    | 4:0815 | 20145,70           | 62/73 | 0.03 | 21723,72 |

#### Notes

Storage tanks emissions are included in flare emissions.

#### Potential Annual Emissions, uncontrolled

| Emission |                                     |       | Annual Emissions, tpy |           |         |       |       |       |               | mary y  | GHG Em  | issions, tpy |          |
|----------|-------------------------------------|-------|-----------------------|-----------|---------|-------|-------|-------|---------------|---------|---------|--------------|----------|
| UnitiD   | Émission Unit                       | PM    | PM10,                 | PM2.5     | VOC     | NOx   | (CO   | S02   | Total<br>HAPs | CO2     | CH4     | N2O          | CO2e     |
| AA-001   | Facility gas emissions              |       | -                     | -         | 2048.61 | -     | •     | •     | 155.25        | 465.40  | 3125.06 | 0.00         | 78591.84 |
| AA-002   | Power Oil Pump Engine               | 0.051 | 0.104                 | 0.104     | 0.16    | 11.83 | 19.91 | 0.003 | 0.17          | 624.23  | 0.01    | 0.00         | 624.88   |
| AA-002a  | Compressor Engine                   | 0.066 | 0.135                 | 0.135     | 0.21    | 15.41 | 25.94 | 0.004 | 0.23          | 813.39  | 0.02    | 0.00         | 814.23   |
| AA-003   | Fugitive emissions- equipment leaks | -     |                       | -         | 0.30    | -     |       |       | 0.01          | 0.04    | 0.27    | 0.00         | 6.85     |
| AA-004   | High Pressure Separator             |       | Gas                   | routed to | Flare   |       |       |       |               |         |         |              |          |
| AA-005   | Low Pressure Separator              |       | Gas                   | routed to | Flare   |       |       |       |               |         |         |              |          |
| AA-006   | Heater Treater                      |       | Gas                   | routed to | Flare   |       |       |       |               |         |         |              |          |
| AA-006a  | Heater Treater (burner)             | 0.00  | 0.02                  | 0.02      | 0.01    | 0.21  | 0.18  | 0.00  | 0.0041        | 232.23  | 0.00    | 0.00         | 232.47   |
| AA-007   | Misc. Chemical Tanks                | -     | -                     | -         | 0.02    | -     | -     | -     | 0.02          | -       | •       |              | •        |
| AA-008   | Oil and Water Storage Tanks         |       | Gas                   | routed to | flare   |       |       |       |               |         |         |              |          |
| AA-009   | Truck Loading                       |       |                       |           | 12.07   |       |       |       | 0.5399        | 0.03    | 0.18    | 0            | 4.49     |
| AA-010   | Line Heater                         | 0.00  | 0.01                  | 0.01      | 0.01    | 0.11  | 0.09  | 0.00  | 0.0020        | 127.73  | 0.00    | 0.00         | 127.86   |
|          | Totals                              | 0.12  | 0.28                  | 0.26      | 2061:37 | 27.45 | 46,03 | -0.01 | 158.22        | 2135:32 | 3126:54 | (0.00        | 80274.76 |

#### Notes:

Storage tanks emissions are included in flare emissions, AA-001.

3/3/2025 5 of 22

#### Facility Maximum Hourly Emissions, Controlled

| Emission |                                        | PARKY. | Emissions; lb/hr    |       |         |           |       |       |               |            | GHG Emis | slons, lb/hr | T.      |
|----------|----------------------------------------|--------|---------------------|-------|---------|-----------|-------|-------|---------------|------------|----------|--------------|---------|
| UnitiD   | Émission Unit                          | PM     | PM10                | PM2:5 | VOC     | NOx       | CO    | SO2   | Total<br>HAPs | <b>GO2</b> | CH4      | N2O          | CO2e    |
| AA-001   | Flare                                  | 0.06   | 0.06                | 0.08  | 9.35    | 2.24      | 10.23 | 0.00  | 0.88          | 4207.07    | 14.27    | 0.01         | 4565.77 |
| AA-001a  | Flare Pilot                            | 0.00   | 0.00                | 0.00  | 0.00    | 0.00      | 0.00  | 0.00  | 0.00          | 5.84       | 0.00     | 0.00         | 5.85    |
| AA-002   | Power Oil Pump Engine                  | 0.01   | 0.02                | 0.02  | 0.04    | 2.70      | 4.55  | 0.00  | 0.04          | 142.52     | 0.01     | 0.00         | 142.75  |
| AA-002a  | Compressor Engine                      | 0.02   | 0.03                | 0.03  | 0.05    | 3.52      | 5.92  | 0.00  | 0.05          | 185.71     | 0.00     | 0.00         | 185.90  |
| AA-003   | Fugitive emissions- equipment<br>leaks | -      | -                   |       | 0.07    | -         |       | -     | 0.00          | 0.01       | 0.00     | 0.00         | 0.10    |
| AA-004   | High Pressure Separator                |        |                     |       | GAS ROU | TED TO FL | ARE   |       |               |            |          | -            |         |
| AA-005   | Low Pressure Separator                 |        |                     |       | GAS ROU | TED TO FL | ARE   |       |               |            |          |              |         |
| AA-006   | Heater Treater                         |        |                     |       | GAS ROU | TED TO FL | ARE   |       |               |            |          |              |         |
| AA-006a  | Heater Treater (burner)                | 0.00   | 0.00                | 0.00  | 0.00    | 0.05      | 0.04  | 0.00  | 0.00          | 58.32      | 0.00     | 0.00         | 58.38   |
| AA-007   | Misc. Chemical Tanks                   | -      | -                   |       | 0.00    | -         | •     | •     | 0.00          | -          | -        | -            | 0.00    |
| AA-008   | Oil and Water Storage Tanks            |        | GAS ROUTED TO FLARE |       |         |           |       |       |               |            |          |              |         |
| AA-009   | Truck Loading                          | -      | -                   |       | 117.72  | -         | -     | -     | 5.27          | 0.01       | 0.04     | 0            | 1.03    |
| AA-010   | Line Heater                            | 0.00   | 0.00                | 0.00  | 0.00    | 0.02      | 0.02  | 0.00  | 0.0005        | 29.16      | 0.00     | 0.00         | 29.19   |
|          | Totals                                 | 0,09   | 0.12                | 0.12  | 127.23  | 8/52      | 20.74 | 0.002 | 6.25          | 4899,47    | 14.32    | 0,01         | 4959:77 |

#### Notes

Storage tanks emissions are included in flare emissions.

Truck loading hourly emissions are dictated by the capacity of the transfer pump

4.38 tpy = 1 PPH

3/3/2025 6 of 22

### **Flash Gas Analysis and Conversions**

| Component  | VOC and/or HAP? | Moi %   | Wt%      |
|------------|-----------------|---------|----------|
| Total S    | None            | ***     | 0.00000% |
| CO2        | None            | 0.362%  | 0.160%   |
| N2         | None            | 0.000%  | 0.000%   |
| Methane    | None            | 11.546% | 1.852%   |
| Ethane     | None            | 6.480%  | 1.949%   |
| Propane    | VOC             | 19.755% | 8.712%   |
| Isobutane  | VOC             | 20.171% | 11.724%  |
| Butane     | VOC             | 12.576% | 7.309%   |
| Isopentane | VOC             | 9.194%  | 6.633%   |
| Pentane    | VOC             | 5.953%  | 4.295%   |
| Hexane     | VOC             | 3.906%  | 3.366%   |
| Heptanes   | VOC             | 6.630%  | 6.644%   |
| Benzene    | VOC and HAP     | 0.390%  | 0.544%   |
| Toluene    | VOC and HAP     | 0.388%  | 0.639%   |
| e-Benzene  | VOC and HAP     | 0.015%  | 0.028%   |
| Xylenes    | VOC and HAP     | 0.211%  | 0.400%   |
| n-hexane   | VOC and HAP     | 2.422%  | 3.726%   |
| Total VOC  |                 | 79.190% | 54.020%  |
| Total HAP  |                 | 3.426%  | 5.337%   |

| Heat of combustion, Btu/ft <sup>3</sup> | 2465.9 |
|-----------------------------------------|--------|
| Molecular weight                        | 46.02  |

Gas analysis generated by E&P Tanks software.

3/3/2025 7 of 22

#### **Produced Gas Analysis and Conversions**

| Component  | VOC and/or<br>HAP? | Mol %   | Wt %     |
|------------|--------------------|---------|----------|
| Total S    | None               | 0.000%  | 0.00000% |
| CO2        | None               | 3.663%  | 6.696%   |
| N2         | None               | 2.039%  | 2.372%   |
| Methane    | None               | 67.467% | 44.953%  |
| Ethane     | None               | 13.830% | 17.272%  |
| Propane    | voc                | 7.074%  | 12.956%  |
| isobutane  | VOC                | 1.484%  | 3.582%   |
| Butane     | VOC                | 2.649%  | 6.395%   |
| Isopentane | VOC                | 0.623%  | 1.867%   |
| Pentane    | VOC                | 0.554%  | 1.660%   |
| Hexane     | VOC                | 0.573%  | 2.051%   |
| n-Hexane   | VOC and HAP        | 0.136%  | 0.196%   |
| Heptanes+  | voc                | 0.044%  | 0.196%   |
| Benzene    | VOC and HAP        | 0.042%  | 0.051%   |
| Toluene    | VOC and HAP        | 0.010%  | 0.039%   |
| e-Benzene  | VOC and HAP        | 0.001%  | 0.004%   |
| Xylenes    | VOC and HAP        | 0.007%  | 0.020%   |
| Total VOC  |                    | 13.001% | 28.707%  |
| Total HAP  |                    | 0.196%  | 0.310%   |

| Heat of combustion, Btu/ft <sup>3</sup> | 1302.0 |
|-----------------------------------------|--------|
| Molecular weight                        | 24.08  |

3/3/2025 8 of 22

**TANK W & B GAS COMPOSITION** 

| Component  | VOC and/or<br>HAP? | Mol %  | Wt %     |        |          |          |
|------------|--------------------|--------|----------|--------|----------|----------|
| Total S    | None               | 0.000% | 0.00000% |        |          |          |
| CO2        | None               | 0.32%  | 0.25%    | 44.1   | 0.140414 |          |
| N2         | None               | 0.00%  | 0.00%    | 28.01  | 0        |          |
| Methane    | None               | 4.76%  | 1.35%    | 16.04  | 0.762878 |          |
| Ethane     | None               | 7.23%  | 3.86%    | 30.07  | 2.174783 |          |
| Propane    | VOC                | 24.31% | 19.03%   | 44.1   | 10.72005 |          |
| Isobutane  | VOC                | 23.60% | 24.34%   | 58.12  | 13.71649 |          |
| Butane     | VOC                | 14.17% | 14.62%   | 58.12  | 8.235546 |          |
| Isopentane | VOC                | 9.38%  | 12.01%   | 72.15  | 6.766083 |          |
| Pentane    | VOC                | 5.77%  | 7.39%    | 72.15  | 4.163055 |          |
| Hexane     | VOC                | 3.28%  | 5.02%    | 86.18  | 2.8286   |          |
| Heptanes+  | VOC                | 4.52%  | 8.03%    | 100.21 | 4.526586 |          |
| Benzene    | VOC and HAP        | 0.32%  | 0.44%    | 78.11  | 0.247531 | 0.539932 |
| Toluene    | VOC and HAP        | 0.27%  | 0.44%    | 92.14  | 0.245092 |          |
| e-Benzene  | VOC and HAP        | 0.01%  | 0.02%    | 106.17 | 0.009449 |          |
| Xylenes    | VOC and HAP        | 0.12%  | 0.23%    | 106.16 | 0.129091 |          |
| n-hexane   |                    | 1.95%  | 2.98%    | 86.18  | 1.677235 |          |
| Total VOC  |                    | 85.75% | 91.56%   | I      | 56.34289 |          |
| Total HAP  |                    | 2.660% | 4.10%    |        |          |          |

Heat of combustion, Btu/ft<sup>3</sup> 2796.8 Molecular weight 51.43

Note: W&B vapors and truck loading vapors assumed to have same composition Gas analysis generated by E&P Tanks software.

3/3/2025 9 of 22

#### **Tank Uncontrolled Emissions Summary**

|                         |                  |        | initiai           |        |  |
|-------------------------|------------------|--------|-------------------|--------|--|
|                         | <u>Potential</u> |        | <b>Production</b> |        |  |
| Total flash gas ,       | 1,488,400        | SCF/yr | 170               | SCF/hr |  |
| Total flash gas ,       | 88.43            | tpy    | 20.19             | lb/hr  |  |
| Total tank W&B loss     | 103,328          | SCF/yr | 12                | SCF/hr |  |
| Total tank W &B losses  | 6.86             | tpy    | 1.57              | lb/hr  |  |
| Total tank emissions    | 95.29            | tpy    | 21.76             | lb/hr  |  |
| Tank emissions to flare | 95.29            | tpy    | 21.76             | lb/hr  |  |
|                         | 688.76           |        |                   |        |  |
|                         | 0.04             | 0.04   | 0.0001            |        |  |

#### Notes:

3/3/2025 10 of 22

<sup>1.</sup> Total flash gas calculated using gas/oil ratio from E&P tanks program and potential crude and water production

<sup>2.</sup> All tank emissions included with flare, Emission Point AA-001.

### Calculation of Criteria and Hazardous Flare Emissions Using 30-day Average Production Values

Detential

#### Gas Flow to Flare:

|                                     |   | <u>Potentiai</u> |
|-------------------------------------|---|------------------|
| Flow to flare of tank flash gas     | = | 88.43 tpy        |
| Flow to flare of tank W&B emissions |   | 6.86 tpy         |
| flow to flare from truck loading    | = | 0.00 tpy         |
| Total process gas to flare          | = | 95.29 tpy        |
| Produced gas to flare               | = | 6947.98 tpy      |
|                                     | = | 219000.00 mcf/yr |
|                                     |   |                  |

Produced gas combustion heat = 285138.00 MMBtu/yr process gas combustion heat = 3875.34 MMBtu/yr flare gas combustion heat, total = 289013.34 MMBtu/yr

|             |                  |                            | <u>Potentia</u> | <u>l Emissions</u> |                  | Potential Er | <u>missions</u> |
|-------------|------------------|----------------------------|-----------------|--------------------|------------------|--------------|-----------------|
|             | <u>Pollutant</u> | Emission factor, lbs/MMBtu | <u>lb/hr</u>    | <u>tpy</u>         | <u>Pollutant</u> | <u>lb/hr</u> | <u>tpy</u>      |
|             | NOx              | 0.068                      | 2.243           | 9.826              | n-hexane         | 0.6659       | 2.9165          |
| Calculation | n CO             | 0.31                       | 10.228          | 44.797             | benzene          | 0.0185       | 0.0811          |
|             | PM               | 0.00186                    | 0.001           | 0.269              | e-benzene        | 0.0014       | 0.0061          |
|             | VOC              | mass balance               | 9.354           | 40.972             | toluene          | 0.0151       | 0.0661          |
|             | SO <sub>2</sub>  | mass balance               | 0.000           | 0.000              | xylenes          | 0.0080       | 0.0352          |
|             | PM10/PM2.5       | 0.00745                    | 0.246           | 1.077              | Total HAPs       | 0.7089       | 3.1049          |

#### Notes:

- 1. Emission factors from AP-42, Table 13.5-1, are used to calculate NOx and CO emissions, and PM emission factor from AP-42, Table 1.4-2.
- Mass balance calculations utilize flare input gas flow and a flare destruction efficiency of 98% minimum.
- 3. Mass balance for sulfur assumes all sulfur converted to SO2 in flare.

ank Battery HAP emissions calculated using mass balance and 98% destruction efficiency Oil General Permit Coverage Application

3/3/2025 11 of 22

## Calculation of Maximum Hourly Criteria and Hazardous Flare Emissions Using Initial Production Values

#### Gas Flow to Flare:

|   | <u>Potential</u> |
|---|------------------|
| = | 20.19 lbs/hr     |
|   | 1.57 lbs/hr      |
| = | 0.00 lbs/hr      |
| = | 21.76 lbs/hr     |
| = | 1982.87 lbs/hr   |
| = | 31.25 mcf/hr     |
| = | 40.69 MMBtu/hr   |
| = | 0.44 MMBtu/hr    |
| = | 41.13 MMBtu/hr   |
|   | = = = =          |

|             |                  |                            | Maximum Hourly Emissions |                  | Potential Emissions |
|-------------|------------------|----------------------------|--------------------------|------------------|---------------------|
|             | <u>Pollutant</u> | Emission factor, Ibs/MMBtu | <u>lb/hr</u>             | <u>Pollutant</u> | <u>lb/hr</u>        |
|             | NOx              | 0.068                      | 2.797                    | n-hexane         | 0.8285              |
| Calculation | CO               | 0.37                       | 15.218                   | benzene          | 0.0226              |
|             | PM               | 0.00745                    | 0.306                    | e-benzene        | 0.0017              |
|             | VOC              | mass balance               | 11.631                   | toluene          | 0.0182              |
|             | SO <sub>2</sub>  | mass balance               | 0.000                    | xylenes          | 0.0096              |
|             |                  |                            |                          | Total HAPs       | 0.8806              |

#### Notes:

- Emission factors from AP-42, Table 13.5-1, are used to calculate NOx and CO emissions, and PM emission factor from AP-42, Table 1.4-2.
- 2. Mass balance calculations utilize flare input process gas flow and a flare destruction efficiency of 98% minimum.
- 3. Mass balance for sulfur assumes all sulfur converted to SO2 in flare.
- 4. HAP emissions calculated using mass balance and 98% destruction efficiency

3/3/2025 12 of 22

#### **Calculation of Uncontrolled Emissions of Produced Gas**

|                                       |   | <u>Potential</u> |
|---------------------------------------|---|------------------|
| Flow to flare from tank flash gas     | = | 88.43 tpy        |
| Flow to flare from tank W&B emissions | = | 6.86             |
| flow to flare from truck loading      | = | 0.00 tpy         |
| Produced gas to flare from separators | = | 6947.98 tpy      |

|                     |                            | Potential I  | <u>Emissions</u> |
|---------------------|----------------------------|--------------|------------------|
| <u>Pollutant</u>    | Emission factor, lbs/MMBtu | <u>lb/hr</u> | tpy              |
| VOC                 | mass balance               | 467.719      | 2048.61          |
| H2S                 | mass balance               | 0.000        | 0.00             |
| n-hexane            | mass balance               | 33.293       | 145.82           |
| benzene             | mass balance               | 0.926        | 4.06             |
| e-benzene           | mass balance               | 0.069        | 0.30             |
| toluene             | mass balance               | 0.754        | 3.30             |
| Calculation xylenes | mass balance               | 0.402        | 1.76             |
| total HAPs          | mass balance               | 35.444       | 155.25           |
| methane             | mass balance               | 713.484      | 3125.06          |
| CO2                 | mass balance               | 106.255      | 465.40           |

Note: For calculation of uncontrolled emissions, flare efficiency is 0%.

3/3/2025 13 of 22

#### **Calculation of Flare GHG Emissions**

Process gas to flare, mmcf/yr 1.57
N2O emission factor, kg/mmBtu 0.0001
HHV, mmBtu/scf 0.001235
CO2 density, kg/ft3 0.052600
CH4 density, kg/ft3 0.019200
flare efficiency 98.00%

#### **PROCESS GAS**

| carbon | CO2 (from c | combustion) | CO2 input | СН4, илсо | mbusted  | N2O              | CO2e     |
|--------|-------------|-------------|-----------|-----------|----------|------------------|----------|
| atoms  | cubic ft.   | tpy         | tpy       | cubic ft. | tpy¹     | tpy <sup>1</sup> | tpy      |
|        |             |             | 3.29E-01  | 3.63E+03  | 7.66E-02 | 2.13E-04         | 2.31E+00 |
| 1      | 1.78E+05    | 1.03E+01    | *         | ł         |          |                  | 1.03E+01 |
| 2      | 2.00E+05    | 1.15E+01    |           | :         |          |                  | 1.15E+01 |
| 3      | 9.13E+05    | 5.28E+01    |           |           |          |                  | 5.28E+01 |
| 4      | 2.02E+06    | 1.17E+02    |           |           |          |                  | 1.17E+02 |
| 5+     | 2.06E+06    | 1.19E+02    |           |           |          |                  | 1.19E+02 |
| Total  | 5.36E+06    | 3.10E+02    | 3.29E-01  | 3.63E+03  | 7.66E-02 | 2.13E-04         | 3.13E+02 |

#### **PRODUCED GAS**

produced gas to flare, mmcf/yr

219.00

| carbon | CO2 (from c | ombustion) | CO2 input | CH4, unco     | mbusted  | N2O      | CO2e     |
|--------|-------------|------------|-----------|---------------|----------|----------|----------|
| atoms  | cubic ft.   | tpy        | tpy       | cubic ft. tpy |          | tpy      | tpy      |
|        |             |            | 4.64E+02  | 2.96E+06      | 6.24E+01 | 2.98E-02 | 2.03E+03 |
| 1      | 1.45E+08    | 8.38E+03   |           |               |          |          | 8.38E+03 |
| 2      | 5.94E+07    | 3.43E+03   |           |               |          |          | 3.43E+03 |
| 3      | 4.55E+07    | 2.64E+03   |           |               |          |          | 2.64E+03 |
| 4      | 3.55E+07    | 2.05E+03   |           |               |          |          | 2.05E+03 |
| 5+     | 1.99E+07    | 1.15E+03   |           |               |          |          | 1.15E+03 |
| Total  | 3.05E+08    | 1.77E+04   | 4.64E+02  | 2.96E+06      | 6.24E+01 | 2.98E-02 | 1.97E+04 |

Note: GHG emissions calculated using procedures from 40 CFR 98.233(n)(4)

3/3/2025 14 of 22

#### **Equipment Component Fugitive Emissions**

| Components             | Counts | Emission Factor <sup>1</sup> | Emissions   | Wt. Fraction | VOC Em | issions | VOC%             | HAP Em | issions | GHG I    | Emissions, t | on/yr |
|------------------------|--------|------------------------------|-------------|--------------|--------|---------|------------------|--------|---------|----------|--------------|-------|
|                        |        | scf/hr/component             | lbs/hr      | voc          | lb/hr  | tpy     | HAP <sup>3</sup> | lb/hr  | tpy     | CO2      | CH4          | CO2e  |
| Valves:                | 37     |                              |             |              |        |         |                  |        | 7       |          |              |       |
| gas/vapor              | 24     | 0.027                        | 0.041116838 | 0.29         | 0.012  | 0.05    | 0.31%            | 0.000  | 0.001   | 0.012035 | 0.080884     | 2.03  |
| light oil <sup>2</sup> | 13     | 0.05                         | 0.041243742 | 0.54         | 0.022  | 0.10    | 5.34%            | 0.002  | 0.010   | 0.012073 | 0.073758     | 1.86  |
| heavy oil              | 0      | 0.0005                       | 0           | 0.29         | 0.000  | 0.00    | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| Pumps:                 |        |                              | 0           | 0.29         |        |         | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| Light oil              | 0      | 0.01                         | 0           | 0.73         | 0.000  | 0.00    | 1.66%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| heavy oil              | 0      | 0                            | 0           | 0.29         |        |         | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| Flanges:               | 46     |                              | 0           | 0.29         |        |         | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| gas/vapor              |        | 0                            | 0           | 0.29         | 0.000  | 0.00    | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| light oil              | 46     | 0.003                        | 0.008756364 | 0.73         | 0.006  | 0.03    | 1.66%            | 0.000  | 0.001   | 0.002563 | 0.015659     | 0.39  |
| heavy oil              | 0      | 0.0009                       | 0           | 0.29         | 0.000  | 0.00    | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| Relief Valve:          |        |                              | 0           | 0.29         |        |         | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| gas/vapor              | 4      | 0.04                         | 0.010152306 | 0.29         | 0.003  | 0.01    | 0.31%            | 0.000  | 0.000   | 0.002972 | 0.018156     | 0.46  |
| Connectors:            | 101    |                              | 0           | 0.29         |        |         | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| gas/vapor              | 67     | 0.003                        | 0.012753834 | 0.29         | 0.004  | 0.02    | 0.31%            | 0.000  | 0.000   | 0.003733 | 0.022808     | 0.57  |
| light oil              | 34     | 0.007                        | 0.015101555 | 0.73         | 0.011  | 0.05    | 1.66%            | 0.000  | 0.001   | 0.00442  | 0.027007     | 0.68  |
| heavy oil              | 0      | 0.0003                       | 0           | 0.29         | 0.000  | 0.02    | 0.31%            | 0.000  | 0.000   | 0        | 0            | 0.00  |
| Other                  | 1      | 0.3                          | 0.019035573 | 0.29         | 0.005  | 0.02    | 1.66%            | 0.000  | 0.001   | 0.005572 | 0.034042     | 0.86  |
|                        |        |                              |             | Totals       | 0.064  | 0.302   |                  | 0.003  | 0.014   | 0.043    | 0.272        | 6.851 |

#### Notes:

1. Emission factors and equipment counts taken from 40 CFR 98, subpart W.

| <ol><li>Light oil is defined as having Al</li></ol> | PI gravity greater than or e | qual to 20 degrees | API.    | Equipment      | Count | Valves | Flan | ges Fitt | ings <u>prv</u> | Other |   |
|-----------------------------------------------------|------------------------------|--------------------|---------|----------------|-------|--------|------|----------|-----------------|-------|---|
| <ol><li>Vapors emitted from gas service</li></ol>   | e equipment assumed to be    | e same as produce  | ed gas, | wellhead       |       | 1      | 5    | 10       | 4               | 0     | 1 |
| vapor from liquid service equip                     | ment assumed to be the sa    | ame as flash gas.  |         | heater treater |       | 1      | 8    | 12       | 20              | 0     | 0 |
|                                                     |                              | lb/hr              | tpy     | header         |       | 0      | 0    | 0        | 0               | 0     | 0 |
|                                                     | n-hexane                     | 0.02060            | 0.09021 | separator      |       | 2      | 12   | 24       | 20              | 0     |   |
|                                                     | benzene                      | 0.00051            | 0.00224 | meters/piping  |       | 0      | 0    | 0        | 0               | 0     | 0 |
|                                                     | ethyl benzene                | 0.00004            | 0.00018 | compressor     |       | 1      | 12   | 0        | 57              | 4     | 0 |
|                                                     | toluene                      | 0.00039            | 0.00172 | dehydrator     |       | 0      | 0    | 0        | 0               | 0     | 0 |
|                                                     | xylene                       | 0.00020            | 0.00088 |                | total |        | 37   | 46       | 101             | 4     | 1 |

3/3/2025 15 of 22

#### **ENGINE POTENTIAL EMISSIONS CALCULATIONS**

|            |            | Heat Input |       |      | Emissions, tpy |      |      |      |       |         | GHG Emissions, tons/yr |       |         |
|------------|------------|------------|-------|------|----------------|------|------|------|-------|---------|------------------------|-------|---------|
| Engine No. | HP         | mmBtu/hr   | NOx   | VOC  | СО             | SO2  | TSP  | PM10 | PM2.5 | CO2     | CH4                    | N2O   | CO2e    |
| AA-002     | 165        | 1.22       | 11.83 | 0.16 | 19.91          | 0.00 | 0.05 | 0.10 | 0.10  | 624.23  | 1.18E-02               | 0.001 | 624.88  |
| AA-002a    | 215        | 1.59       | 15.41 | 0.21 | 25.94          | 0.00 | 0.07 | 0.14 | 0.14  | 813.39  | 1.53E-02               | 0.002 | 814.23  |
|            | A STATE OF | Total      | 27.24 | 0.36 | 45.85          | 0.01 | 0.12 | 0.24 | 0.24  | 1437.62 | 0.03                   | 0.00  | 1439.11 |

| Pollutant | AP-42<br>Emission Factor | Conversion Factor, g to lbs |
|-----------|--------------------------|-----------------------------|
|           | lbs/MMBtu                | 0.0022046                   |
| NOx       | 2.21                     | CO2                         |
| /OC       | 0.0296                   | CH4                         |
| co        | 3.72                     | N2O                         |
| 502       | 0.000588                 |                             |
| PM10      | 0.00950                  |                             |
| PM2.5     | 0.00950                  |                             |
| PM cond   | 0.00991                  |                             |

#### **ENGINE HAP EMISSIONS CALCULATIONS**

|                           | Natural Gas      | AA-           | 002      | AA-(          | 002a     |
|---------------------------|------------------|---------------|----------|---------------|----------|
|                           | Emission Factor, | HAP EMISSIONS |          | HAP EMISSIONS |          |
| HAP                       | lbs/mmBtu        | lbs/hr        | tpy      | lbs/hr        | tpy      |
| 1,1,2,2-Tetrachloroethane | 2.53E-05         | 3.09E-05      | 1.35E-04 | 4.03E-05      | 1.76E-04 |
| 1,1,2-Trichloroethane     | 1.53E-05         | 1.87E-05      | 8.19E-05 | 2.44E-05      | 1.07E-04 |
| 1,3-Butadiene             | 6.63E-04         | 8.10E-04      | 3.55E-03 | 1.06E-03      | 4.62E-03 |
| 1,3-Dichloropropene       | 1.27E-05         | 1.55E-05      | 6.80E-05 | 2.02E-05      | 8.86E-05 |
| Acetaldehyde              | 2.79E-03         | 3.41E-03      | 1.49E-02 | 4.44E-03      | 1.95E-02 |
| Acrolein                  | 2.63E-03         | 3.21E-03      | 1.41E-02 | 4.19E-03      | 1.83E-02 |
| Benzene                   | 1.58E-03         | 1.93E-03      | 8.46E-03 | 2.52E-03      | 1.10E-02 |
| Carbon Tetrachloride      | 1.77E-05         | 2.16E-05      | 9.47E-05 | 2.82E-05      | 1.23E-04 |
| Chlorobenzene             | 1.29E-05         | 1.58E-05      | 6.90E-05 | 2.05E-05      | 9.00E-05 |
| Chloroform                | 1.37E-05         | 1.67E-05      | 7.33E-05 | 2.18E-05      | 9.55E-05 |
| Ethylbenzene              | 2.48E-05         | 3.03E-05      | 1.33E-04 | 3.95E-05      | 1.73E-04 |
| Ethylene Dibromide        | 2.13E-05         | 2.60E-05      | 1.14E-04 | 3.39E-05      | 1.49E-04 |
| Formaldehyde              | 2.05E-02         | 2.50E-02      | 1.10E-01 | 3.26E-02      | 1.43E-01 |
| Methanol                  | 3.06E-03         | 3.74E-03      | 1.64E-02 | 4.87E-03      | 2.13E-02 |
| Methylene Chloride        | 4.12E-05         | 5.03E-05      | 2.20E-04 | 6.56E-05      | 2.87E-04 |
| Naphthalene               | 9.71E-05         | 1.19E-04      | 5.20E-04 | 1.55E-04      | 6.77E-04 |
| PAH                       | 1.41E-04         | 1.72E-04      | 7.55E-04 | 2.24E-04      | 9.83E-04 |
| Styrene                   | 1.19E-05         | 1.45E-05      | 6.37E-05 | 1.89E-05      | 8.30E-05 |
| Toluene                   | 5.58E-04         | 6.82E-04      | 2.99E-03 | 8.88E-04      | 3.89E-03 |
| Vinyl Chloride            | 7.18E-06         | 8.77E-06      | 3.84E-05 | 1.14E-05      | 5.01E-05 |
| Xylene                    | 1.95E-04         | 2.38E-04      | 1.04E-03 | 3.10E-04      | 1.36E-03 |
| Total                     |                  | 3.96E-02      | 1.73E-01 | 5.16E-02      | 2.26E-01 |

AA-002 heat input=

1.22 mmBtu/hr

AA-002a heat input=

1.59 mmBtu/hr

annual operating hours=

8760

Emission factors from AP-42, Table 3.2-3

3/3/2025 17 of 22

#### Truck Loading Emissions Calculations 30-Day Average production

Basis: 30 day average production rates

L<sub>L</sub> = 12.46 \*(SPM)/T

(from EPA AP-42 Section 5.2.2.1)

Where:

L<sub>L</sub> = Loading loss, lbs per 1,000 gal of liquid loaded

S = Saturation factor

P = True vapor pressure of liquid, psia M = Molecular weight of vapors, lb/lb-mole

T = Temperature of bulk liquid loaded, degrees R

#### CRUDE OIL

| EPA<br>"S" | True VP of | Mol. Wt.<br>Of   | Temp.  | Sales<br>Volume          | Loading<br>Rate | Uncontrolled Estimat<br>Emissions, |          |       |
|------------|------------|------------------|--------|--------------------------|-----------------|------------------------------------|----------|-------|
| Factor     | Liquid     | Vapors           | Liquid |                          |                 | Total                              | Hydrocar | bons  |
|            | (psia)     | (lb/lb-<br>mole) | °(R)   | (10 <sup>3</sup> gal/yr) | (gal/hr)        | Lı                                 | (lb/hr)  | (tpy) |
| 1.45       | 5          | 48.00            | 545    | 3,311                    | 16,000          | 7.96                               | 127.30   | 13.17 |

#### PRODUCED WATER

| -   |    | 1-4 | ion |
|-----|----|-----|-----|
| L.A | CH | ıaı | IOL |

| ı | EPA    | True VP | Mol. Wt.         | Temp.  | Loaded                   | Loading  | Uncont | rolled Es | timated |
|---|--------|---------|------------------|--------|--------------------------|----------|--------|-----------|---------|
| ı | "S"    | of      | Of               | of     | Volume                   | Rate     | E      | missions  | 3,      |
| n | Factor | Liquid  | Vapors           | Liquid |                          |          | Total  | Hydrocar  | rbons   |
|   |        | (psia)  | (lb/lb-<br>mole) | *(R)   | (10 <sup>3</sup> gal/yr) | (gal/hr) | L      | (lb/hr)   | (tpy)   |
|   | 1.45   | 0.05    | 48.00            | 545    | 153                      | 16,000   | 0.08   | 1.27      | 0.01    |

| HAPs      | tons/yr  |
|-----------|----------|
| Benzene   | 0.057897 |
| Toluene   | 0.057327 |
| e-Benzene | 0.00221  |
| Xylenes   | 0.030194 |
| n-hexane  | 0.392304 |
|           | 0.539932 |

3/3/2025 18 of 22

#### Truck Loading Emissions Calculations, Maximum Ibs/hr

 $L_L = 12.46 * (SPM)/T$ 

(from EPA AP-42 Section 5.2.2.1)

#### Where:

L<sub>L</sub> = Loading loss, lbs per 1,000 gal of liquid loaded

S = Saturation factor

P = True vapor pressure of liquid, psia
M = Molecular weight of vapors, lb/lb-mole
T = Temperature of bulk liquid loaded, degrees R

#### CRUDE OIL

| EPA<br>"S"<br>Factor | True VP<br>of<br>Liquid | Mol. Wt.<br>Of<br>Vapors | of   | Sales<br>Volume          | Loading<br>Rate | Uncontrolled Estin<br>Emissions,<br>Total Hydrocarbo |         | 3, |
|----------------------|-------------------------|--------------------------|------|--------------------------|-----------------|------------------------------------------------------|---------|----|
|                      | (psia)                  | (lb/lb-<br>mole)         | *(R) | (10 <sup>3</sup> gal/hr) | (gal/hr)        | Lı                                                   | (lb/hr) |    |
| 1.45                 | 5                       | 48.00                    | 545  | 16.0                     | 16,000          | 7.96                                                 | 127.30  |    |

#### PRODUCED WATER

Calculation

|    |        |        | Commence of the Commence of th |                                   | Loaded                   | The County of th | The second second second |          |               |
|----|--------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------|---------------|
|    | "S"    | of     | Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of                                | Volume                   | Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | missions | Marie Control |
| on | Factor | Liquid | Vapors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DESCRIPTION OF THE PARTY NAMED IN |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                    | Hydrocar | bons          |
|    |        | (psia) | (lb/lb-<br>mole)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | °(R)                              | (10 <sup>3</sup> gal/hr) | (gal/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | j                        | (lb/hr)  |               |
|    | 1.45   | 0.05   | 48.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 545                               | 16.0                     | 16,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                     | 1.27     |               |

| HAPs      | lbs/hr   |
|-----------|----------|
| Benzene   | 0.564848 |
| Toluene   | 0.559285 |
| e-Benzene | 0.021562 |
| Xylenes   | 0.294576 |
| n-hexane  | 3.82734  |
| total     | 5.267611 |

3/3/2025 19 of 22

#### **External Combustion Equipment Emissions Calculations**

|             | Capacity |       | Emissions, tons/yr |        |       |       |       | GHO   | Emissions | metric tor | is/yr |      |        |
|-------------|----------|-------|--------------------|--------|-------|-------|-------|-------|-----------|------------|-------|------|--------|
| Source      | MMBtu/hr | PM    | PM10               | Pm 2.5 | NOx   | СО    | VOC   | SO2   | HAP       | CO2        | CH4   | N20  | CO2e   |
| Heater Trea | 0.5      | 0.004 | 0.016              | 0.016  | 0.215 | 0.180 | 0.012 | 0.001 | 0.004     | 255.45     | 0.00  | 0.00 | 255.72 |
| Line Heate  | 0.25     | 0.002 | 0.008              | 0.008  | 0.107 | 0.090 | 0.006 | 0.001 | 0.000     | 127.73     | 0.00  | 0.00 | 127.86 |
| Totals      |          | 0.006 | 0.024              | 0.024  | 0.322 | 0.271 | 0.018 | 0.002 | 0.004     | 383.18     | 0.01  | 0.00 | 383.58 |

| Ap-42 natural gas | combustion |
|-------------------|------------|
| Emission Factors  | Ibs/MMRtu  |

| Limbore | on ractors, rospitalistic |
|---------|---------------------------|
| Pm      | 0.001863                  |
| PM10    | 0.007451                  |
| PM2.5   | 0.007451                  |
| NOx     | 0.098039                  |
| CO      | 0.082353                  |
| VOC     | 0.005392                  |
| SO2     | 0.000588                  |
| HAPs    | 0.001851                  |
|         |                           |

#### 40 CFR 98, subpart C

| CH4 0.001  |  |
|------------|--|
| N2O 0.0001 |  |

#### **Natural Gas Combustion HAP Calculations**

|                           | Natural Gas      | Heater Treater |               | Flare Pilot |               | Line Heater |               |  |
|---------------------------|------------------|----------------|---------------|-------------|---------------|-------------|---------------|--|
|                           | Emission Factor, | HAP EN         | HAP EMISSIONS |             | HAP EMISSIONS |             | HAP EMISSIONS |  |
| HAP                       | lbs/mmBtu        | lbs/hr         | tpy           | lbs/hr      | tpy           | lbs/hr      | tpy           |  |
| Benzene                   | 2.06E-06         | 1.03E-06       | 4.51E-06      | 1.03E-07    | 4.51E-07      | 5.15E-07    | 2.25E-06      |  |
| Dichlorobenzene           | 1.18E-06         | 5.88E-07       | 2.58E-06      | 5.88E-08    | 2.58E-07      | 2.94E-07    | 1.29E-06      |  |
| Formaldehyde              | 7.35E-05         | 3.68E-05       | 1.61E-04      | 3.68E-06    | 1.61E-05      | 1.84E-05    | 8.05E-05      |  |
| Hexane                    | 1.76E-03         | 8.82E-04       | 3.86E-03      | 8.82E-05    | 3.86E-04      | 4.41E-04    | 1.93E-03      |  |
| Naphthalene               | 5.98E-07         | 2.99E-07       | 1.31E-06      | 2.99E-08    | 1.31E-07      | 1.50E-07    | 6.55E-07      |  |
| Polycyclic Organic Matter | 2.38E-05         | 1.19E-05       | 5.21E-05      | 1.19E-06    | 5.21E-06      | 5.95E-06    | 2.61E-05      |  |
| Toluene                   | 3.33E-06         | 1.67E-06       | 7.30E-06      | 1.67E-07    | 7.30E-07      | 8.33E-07    | 3.65E-06      |  |
| Total                     |                  | 9.35E-04       | 4.09E-03      | 9.35E-05    | 4.09E-04      | 4.67E-04    | 2.05E-03      |  |

Burner Heat Input=

0.50 mmBtu/hr

Flare Pilot Heat Input=

0.05 mmBtu/hr

Line Heater Heat Input= annual operating hours=

0.25 8760

Emission factors from AP-42, Table 1.4-3

3/3/2025 21 of 22

#### **FLARE PILOT CALCULATIONS**

| Emission | Combustion    | Capacity |       | Criteria Emissions, tons/yr |       |       |       |       |       |       |
|----------|---------------|----------|-------|-----------------------------|-------|-------|-------|-------|-------|-------|
| Unit ID  | Source        | ммвтин   | PM    | PM10                        | PM2.5 | NOx   | CO    | VOC   | SO2   | HAP   |
| AA-001a  | Flare (Pilot) | 0.05     | 0.000 | 0.002                       | 0.002 | 0.021 | 0.018 | 0.001 | 0.000 | 0.000 |

| Emission | Combustion    | Capacity | GHG    | GHG Emissions, metric tons/yr |       |        |       | <b>Emission</b> | s, short ton | s/yr  |
|----------|---------------|----------|--------|-------------------------------|-------|--------|-------|-----------------|--------------|-------|
| Unit ID  | Source        | ммвтин   | CO2    | CH4                           | N2O   | CO2e   | CO2   | CH4             | N2O          | CO2e  |
| AA-001a  | Flare (Pilot) | 0.05     | 23.223 | 0.000                         | 0.000 | 23.246 | 25.59 | 0.00            | 0.00         | 25.62 |

#### **Gas combustion**

| AP-42 Em | ission Factors, lbs/MMBtu | Emission Factors, kg/MMBt |        |  |
|----------|---------------------------|---------------------------|--------|--|
| TSP      | 0.001863                  | CO2                       | 53.02  |  |
| PM10     | 0.007451                  | CH4                       | 0.001  |  |
| PM2.5    | 0.007451                  | N2O                       | 0.0001 |  |
| NOx      | 0.098039                  |                           |        |  |
| CO       | 0.082353                  |                           |        |  |
| VOC      | 0.005392                  |                           |        |  |
| SO2      | 0.000588                  |                           |        |  |
| HAPs     | 0.001851                  |                           |        |  |

| MDEQ NOTICE OF INTENT FOR COVERAGE UNDER THE OIL PRODUCTION GENERAL PERMIT TO CONSTRUCT/OPERATE AIR EMISSIONS EQUIPMENT AT A SYNTHETIC MINOR SOURCE                                                                                                                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Compliance Plan Section OPGP-G                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Part 1. Equipment List                                                                                                                                                                                                                                                            |  |  |  |  |  |
| List all equipment and the corresponding federal and/or state regulation that is applicable. Clearly identify federal regulations from state requirements. Provide the expected or actual construction date, startup date and removal date if the equipment is no longer on site. |  |  |  |  |  |

| EMISSION<br>UNIT (Ref No.)       | FEDERAL or STATE REGULATION  Ex. 40 CFR Part, Subpart  Ex. 11 Miss. Admin. Code Pt. 2, R. 1.4.B(2). | CONSTRUCTION DATE | STARTUP<br>DATE | REMOVAL<br>DATE |
|----------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|-----------------|-----------------|
| AA-000 Well<br>affected facility | 40 CFR 60, Subpart OOOOa                                                                            |                   |                 |                 |
| AA-002a                          | 40 CFR 60 Subpart JJJJ                                                                              | 3/01/25           | 3/01/25         |                 |
|                                  |                                                                                                     |                   |                 |                 |
|                                  |                                                                                                     |                   |                 |                 |
|                                  |                                                                                                     |                   |                 |                 |
|                                  |                                                                                                     |                   |                 |                 |
|                                  |                                                                                                     |                   |                 |                 |
|                                  |                                                                                                     |                   |                 |                 |

#### Compliance Plan

**Section OPGP-G** 

Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

| EMISSION<br>UNIT (Ref No.)    | APPLICABLE REQUIREMENT (Specific Regulatory citation) | POLLUTANT            | LIMITS/ REQUIREMENTS                                                                                                                                                                                                                                                                                                                   | TEST METHOD/<br>COMPLIANCE<br>MONITORING                                                                                 |
|-------------------------------|-------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Example:<br>Compressor        | Item 8 of Table 2d of 40 CFR 63, Subpart ZZZZ         | HAPs                 | Change oil and filter every 2,160 hours of operation or annually, whichever comes first; Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary; and Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary. | Monitoring of compressor hours of operation                                                                              |
| Example: Tanks                | 40 CFR 60.5395(a)(2)                                  | VOC and<br>Methane   | Must reduce VOC emissions by 95.0 percent within 60 days after startup of production.                                                                                                                                                                                                                                                  | Tank emissions are routed to the flare for destruction at all times of operations.                                       |
| Example: Flare                | 11 Miss. Admin. Code Pt. 2, R.1.4.B(2).               | H₂S                  | 1 grain H <sub>2</sub> S per 100 standard cubic feet<br>(1 gr/100 scf)                                                                                                                                                                                                                                                                 | Recordkeeping of H2S<br>composition of gas by gas<br>analysis; Maintenance of<br>continuous flame for gas<br>combustion. |
| This list of exampl           | es is not intended to be conclusive for each type of  | emission source. Thi | is list only provides examples of how the ta                                                                                                                                                                                                                                                                                           | ble should be completed.                                                                                                 |
| AA-001, Flare & facility wide | 1 Miss. Admin. Code Pt. 2, R.1.4.B(2).                | H₂S                  | Any gas stream containing as much as 1 grain H <sub>2</sub> S per 100 standard cubic feet (1 gr/100 scf) must be incinerated prior to discharge to the atmosphere                                                                                                                                                                      | Recordkeeping of H2S composition of gas by gas analysis; Maintenance of continuous flame for gas combustion.             |
| AA-002, AA-002a,<br>Engines,  | 40 CFR 63, subpart ZZZZ, (§63.6590(a))                | НАР                  | Applicability                                                                                                                                                                                                                                                                                                                          | Applicability Only                                                                                                       |
| AA-002,                       | 40 CFR 63, subpart ZZZZ, (§63.6603 & Table 2(d))      | НАР                  | Change oil and filter every 1,440 hours<br>of operation or annually, whichever<br>comes first; b. Inspect spark plugs every                                                                                                                                                                                                            | Monitoring engine hours of operation                                                                                     |

#### Compliance Plan Section OPGP-G

#### Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

| EMISSION<br>UNIT (Ref No.) | APPLICABLE REQUIREMENT (Specific Regulatory citation) | POLLUTANT | LIMITS/ REQUIREMENTS                                                                                                                                                                                              | TEST METHOD/<br>COMPLIANCE<br>MONITORING |
|----------------------------|-------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                            |                                                       |           | 1,440 hours of operation or annually, whichever comes first, and replace as necessary c. Inspect all hoses and belts every 1,440 hours of operation or annually, whichever comes first, and replace as necessary. |                                          |
| AA-002,                    | 40 CFR 63, subpart ZZZZ, (§63.6605)                   | НАР       | Contiuous compliance and General Duty to operate and maintain in a manner consistent with safety and good air pollution control practies to minimize emissions                                                    | Process Knowledge                        |
| AA-002,                    | 40 CFR 63, subpart ZZZZ, (§63.6640 (a) and Table 6)   | НАР       | i. Operating and maintaining the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or     ii. Develop and follow your own maintenance plan                 | Process Knowledge                        |
| AA-002                     | 40 CFR 63, subpart ZZZZ, (§63.6655 (a),(d) and (e))   | НАР       | Recordkeeping Requiremnts                                                                                                                                                                                         | Recordkeeping                            |
| AA-002                     | 40 CFR 63, subpart ZZZZ, (§63.6660 (a),(b) and (c))   | НАР       | General recordkeeping requirements                                                                                                                                                                                | Recordkeeping                            |
| AA-002,                    | 40 CFR 63, subpart ZZZZ,<br>(§63.6640 (b)             | НАР       | Report any failure to perform a required work practice as scheduled                                                                                                                                               | Reporting                                |
| AA-002                     | 40 CFR 63, subpart ZZZZ, (§63.6665 (a) and Table 8)   | НАР       | Applicable requirements under 40 CFR 63 subpart A                                                                                                                                                                 | Applicability                            |

### Compliance Plan Section OPGP-G

#### Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

| EMISSION<br>UNIT (Ref No.)   | APPLICABLE REQUIREMENT<br>(Specific Regulatory citation) | POLLUTANT          | LIMITS/ REQUIREMENTS                                                                                          | TEST METHOD/<br>COMPLIANCE<br>MONITORING                                 |
|------------------------------|----------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5365a(i)                                       | VOC and<br>Methane | Applicability                                                                                                 | Applicability only                                                       |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5397a(a-g)                                     | VOC and<br>Methane | Develop a fugitive emission monitoring plan                                                                   | Upon Startup                                                             |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5397a(h)                                       | VOC and<br>Methane | Fugitive emission source repair or replacement requirements                                                   | Written Plan development                                                 |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5425a and Table 3                              | VOC and<br>Methane | Applicability of General Provisions of<br>40 CFR 60, Subpart A                                                | Applicability only                                                       |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5410a(j)                                       | VOC and<br>Methane | Demonstration of initial compliance                                                                           | Monitoring                                                               |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.415a(h)                                        | VOC and<br>Methane | Demonstration of continuous compliance                                                                        | Monitoring                                                               |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5420a(c)                                       | VOC and<br>Methane | Recordkeeping requirements                                                                                    | Monitoring and Recordkeeping                                             |
| AA-003 Fugitive<br>Emissions | 40 CFR 60.5420a(b)                                       | VOC and<br>Methane | Reporting requirements                                                                                        | Reporting                                                                |
| AA-008 Storage<br>Tanks      | 40 CFR 60.5365a(e)                                       | VOC and<br>Methane | Applicability determination may take into account legally and practically enforceable limit on tank emissions | Applicability Only. Federally enforceable limit requested for avoidance. |

#### Compliance Plan Section OPGP-G

### Part 2. Applicable Requirements

List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

| EMISSION<br>UNIT (Ref No.)          | APPLICABLE REQUIREMENT (Specific Regulatory citation)                                                                                   | POLLUTANT    | LIMITS/ REQUIREMENTS                                                                                                                          | TEST METHOD/<br>COMPLIANCE<br>MONITORING                                       |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| AA-000<br>Well affected<br>facility | 40 CFR 60.5365a(a)                                                                                                                      | voc          | Applicability                                                                                                                                 | Process Knowledge                                                              |
| AA-000<br>Well affected<br>facility | 40 CFR 60.5375a(a)                                                                                                                      | VOC          | Completion standards/procedures for VOC control                                                                                               | Process Knowledge                                                              |
| AA-000<br>Well affected<br>facility | 40 CFR 60.5410a(a)<br>40 CFR 60.5415a(a)                                                                                                | voc          | Submit notification, annual report,<br>maintain log of records, as<br>applicable                                                              | Recordkeeping and Reporting                                                    |
| AA-000<br>Well affected<br>facility | 40 CFR 60.5420a                                                                                                                         | voc          | Specific notification, recordkeeping and reporting requirements.                                                                              | Recordkeeping and<br>Reporting                                                 |
| AA-002a                             | 40 CFR 60.4230(a)(4)(iii) and 60.4246(a), Subpart JJJJ                                                                                  | NOx, CO, VOC | Applicability                                                                                                                                 |                                                                                |
| AA-002a                             | 40 CFR 60.4233(e), 60.4234, and Table 1, Subpart JJJJ                                                                                   | NOx, CO, VOC | NOx ≤ 2.0 g/hp-hr (160 ppmvd @<br>15 % O2)<br>• CO ≤ 4.0 g/hp-hr (540 ppmvd @<br>15 % O2)<br>• VOC ≤ 1.0 g/hp-hr (86 ppmvd @<br>15 % O2)<br>1 | Initial stack test, follow<br>manufacturer's operation and<br>maintenance plan |
| АА-002а                             | 40 CFR 60.4243(b)(2)(i) and<br>60.4244, Subpart JJJJ; 40 CFR<br>60.8(a), Subpart A; and 11<br>Miss. Admin. Code Pt. 2, R.<br>2.2.B(11). | NOx, CO, VOC | Initial performance testing and routine maintenance                                                                                           | Initial stack test, follow<br>manufacturer's operation and<br>maintenance plan |
| AA-002a                             | 40 CFR 60.4245(a)(1), (2), and (4), Subpart JJJJ                                                                                        | NOx, CO, VOC | Records                                                                                                                                       | Maintain records of notifications, maintenance, and performance testing        |